Convolution and filtering

May 21, 2019

Discrete convolution is defined by

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$
 (1)

Compute a convolution of functions f(n) and h(n):

$$x(n) = \begin{cases} 1, -5 \le n \le 5, \\ 0, \text{ otherwise} \end{cases} \qquad h(n) = \begin{cases} \frac{1}{4}n \ 0 \le n \le 4\\ 0, \text{ otherwise} \end{cases}$$

Task 1

If the length of signal x(n) is N and h(n) has M samples, what is the length of x(n) * h(n)?

Task 2

•

Use script lab2_1.m and generate xn and hn defined with the above equations.

Task 3: Low-pass filters

In the case of image filtering, the first function x(n) is image, while the second one is filtering mask – square array containing the filter coefficient. Common filtering masks are:

• Blurring filter

Diuring inter	$\left[\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right] / 9$
Low-pass filter	$\left[\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 1 \end{array}\right] / 12$

• Gaussian filter

Γ	1	2	1	
	2	4	2	/16
L	1	2	1	,

Use script lab2_3.m and read image lena.jpg. Implement one of the mentioned blurring filters. Run a convolution operation with the defined masks and answer the following questions:

- 1. What is the purpose of normalizing value, by which the filter coefficients are divided?
- 2. Explain with your own words, what low-pass filtering means.

Task 4: High-pass filters

Typical high-pass filter for images

$$\left[\begin{array}{rrrr} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{array}\right]$$

- 1. What is the effect of using the above filter mask on image?
- 2. What is undesired effect that can be noticed.

Task 5: Edge detection

• Prewitt's mask - horizontal

$$\left[\begin{array}{rrrr} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{array}\right]$$

• Prewitt's mask - vertical

$$\left[\begin{array}{rrrr} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{array}\right]$$

• Sobel's mask - horizontal

$$\left[\begin{array}{rrrr} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{array}\right]$$

• Sobel's mask - vertical

• Laplace operator 1

• Laplace operator 1

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
• Laplace operator 2

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Using script lab2_5.m implement one of the Prewitt's mask, one of the Sobel's mask, and one Laplace operator. Convolve them with lena.jpg. What is the effect of using these masks?

Task 6 - Relief effect

A 3D-like effect can be added to an image using the following filter mask:

	0	1]	
-1	1	1	
	0	1	

Open and run script **relievo.m**. How the filter coefficients should be modified in order to chenge a direction of "light" on "relief".