Convolution and filtering

May 21, 2019

Discrete convolution is defined by

$$
\begin{equation*}
y(n)=x(n) * h(n)=\sum_{k=-\infty}^{\infty} x(k) h(n-k) \tag{1}
\end{equation*}
$$

Compute a convolution of functions $f(n)$ and $h(n)$:

$$
x(n)=\left\{\begin{array}{l}
1,-5 \leq n \leq 5, \\
0, \text { otherwise }
\end{array} \quad h(n)=\left\{\begin{array}{l}
\frac{1}{4} n 0 \leq n \leq 4 \\
0, \text { otherwise }
\end{array}\right.\right.
$$

Task 1

If the length of signal $x(n)$ is N and $h(n)$ has M samples, what is the length of $x(n) * h(n)$?

Task 2

Use script lab2_1.m and generate xn and hn defined with the above equations.

Task 3: Low-pass filters

In the case of image filtering, the first function $x(n)$ is image, while the second one is filtering mask - square array containing the filter coefficient. Common filtering masks are:

- Blurring filter

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] / 9
$$

- Low-pass filter

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 1
\end{array}\right] / 12
$$

- Gaussian filter

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right] / 16
$$

Use script lab2_3.m and read image lena.jpg. Implement one of the mentioned blurring filters. Run a convolution operation with the defined masks and answer the following questions:

1. What is the purpose of normalizing value, by which the filter coefficients are divided?
2. Explain with your own words, what low-pass filtering means.

Task 4: High-pass filters

Typical high-pass filter for images

$$
\left[\begin{array}{ccc}
-1 & -1 & -1 \\
-1 & 9 & -1 \\
-1 & -1 & -1
\end{array}\right]
$$

1. What is the effect of using the above filter mask on image?
2. What is undesired effect that can be noticed.

Task 5: Edge detection

- Prewitt's mask - horizontal

$$
\left[\begin{array}{ccc}
-1 & -1 & -1 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

- Prewitt's mask - vertical

$$
\left[\begin{array}{lll}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1
\end{array}\right]
$$

- Sobel's mask - horizontal

$$
\left[\begin{array}{ccc}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{array}\right]
$$

- Sobel's mask - vertical

$$
\left[\begin{array}{lll}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right]
$$

- Laplace operator 1

$$
\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

- Laplace operator 2

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -8 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Using script lab2_5.m implement one of the Prewitt's mask, one of the Sobel's mask, and one Laplace operator. Convolve them with lena.jpg. What is the effect of using these masks?

Task 6 - Relief effect

A 3D-like effect can be added to an image using the follwing filter mask:

$$
\left[\begin{array}{lll}
-1 & 0 & 1 \\
-1 & 1 & 1 \\
-1 & 0 & 1
\end{array}\right]
$$

Open and run script relievo.m. How the filter coefficients should be modified in order to chenge a direction of "light" on "relief".

