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Agenda

Parts 1 and 2:
1. Part 1: “What part”: Introduction to Computer Vision (CV)

a. What is special about image data?
b. Why is it hard?

c. What can be achieved nowadays?
d. Conventional approaches to CV.

2. Part 2: “How part”: Contemporary Al and Machine Learning for CV

a. Introduction to neural networks

b. Convolutional neural networks (ConvNets)
c. Areview of milestone architectures.
d. Challenges and limitations

Seminar (after lunch):
1. Online demos

2. Interactive demos using Jupyter Notebook



Detailed agenda (with hyperlinks)

Computer Vision

Can we learn without supervision?
Introduction to neural networks

Convolutional Neural Networks

Selected milestones of ConvNet architectures
Challenges

Software libraries and tools

Closing remarks
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Part 1:
“What part”:
Introduction to Computer Vision
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Barcelona. Attribution: Contains modified Copernicus Sentinel data 2019 ©1 2



https://commons.wikimedia.org/wiki/File:Barcelona,_Spain._Copernicus_Sentinel-2._ESA.jpg

Sentinel-1A satellite (radar), Bolivi Contains modified Copernicus Sentinel data 20



https://commons.wikimedia.org/wiki/File:Radar_image_of_the_Salar_de_Uyuni,_Bolivia_ESA14511855.jpeg



https://docs.google.com/file/d/1rvS3diRyJOf31ZJwd5MYIDGAg3orB4Jk/preview
https://www.nature.com/articles/s41598-017-04220-8



https://docs.google.com/file/d/1ZTc-UpvRJ5eznaf-wnjC-rO-qeK2Ws-L/preview
https://www.nature.com/articles/s41598-017-04220-8

Conventional approaches



Diagnosing CNS tumours

J. Jelonek, K. Krawiec, R. Stowinski, and J. Szymas. “Grizzly — An image processing and analysis system oriented towards medical images”.
Journal of Decision Systems 7.3-4 (1998).




Handcrafted segmentation algorithms

Task characteristics:
e Conventional optical microscopy
e 14 classes of neoepithelial tumors
e Textural features (esp. spatial arrangement of nuclei) essential

Solution:
e Handcrafted pipeline of preprocessing, feature extraction, and various
classifiers : .
A (Astrocytic tumours) B (Glial tumours)
Astrocytoma anaplasticum Astrocytoma fibrillare
Astrocytoma fibrillare Oligodendroglioma isomorphum
Astrocytoma gemistocyticum Ependymoma
Astrocytoma pilocyticum Choroid plexus papilloma
Astrocytoma protoplasmaticum Glioblastoma multiforme
Glioblastoma multiforme Medulloblastoma
J. Jelonek, K. Krawiec, and R. Stowinski. “Rough Set Reduction of Attributes and their Domains for Neural 18

Networks”. In: Computational Intelligence 11.2 (1995), pp. 339-347.



Handcrafted segmentation algorithms

A (Astrocytic tumours) B (Glial tumours)
Astrocytoma anaplasticum Astrocytoma fibrillare
Astrocytoma fibrillare Oligodendroglioma isomorphum
Astrocytoma gemistocyticum Ependymoma
Astrocytoma pilocyticum Choroid plexus papilloma
Astrocytoma protoplasmaticum Glioblastoma multiforme
Glioblastoma multiforme Medulloblastoma
J. Jelonek, K. Krawiec, and R. Stowinski. “Rough Set Reduction of Attributes and their Domains for Neural 19

Networks”. In: Computational Intelligence 11.2 (1995), pp. 339-347.



Automated feature construction



Automated feature construction

Manual feature construction is:

e Time consuming
e Subjective
e Expensive

Can we automate it?
e In particular, can we make it a part of the training/design process?

21



Evolutionary feature construction

Training phase .1 Testing phase
Background Test example/image
knowledge contained | | xe W
in operators O, Feature Best mapping G ) .
construction | Synthesized recognition | |
(EFP/CFP) ' system (G, h)
Training data T — [ Feature mapping G]
Training : ]
of the Trained | : -
classifier | classifier: ! Ll
h AN J
Parameter settings { | Recognition decision
: h(G(x))

rae e - —m— ——— —— - e w—- -t
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Evolutionary feature construction

Genotypic representation — solution s (fixed-length bit string)

oo Sk Sk Skt Sk Sika3 Sked Skas ..
. ’opcode| ﬂag| arg, ‘ arg, | arg, Hopcode| ﬂag| arg, ‘ arg, | arg, I oo

]
e, |

| . . ! . . .
! i instruction ! i+1* instruction

Krzysztof Krawiec and Bir Bhanu. “Visual Learning by Evolutionary and Coevolutionary
Feature Synthesis”. IEEE Transactions on Evolutionary Computation 11 (5 Oct. 2007).



Object detection in SAR imagery

Krzysztof Krawiec and Bir Bhanu. “Visual Learning by Coevolutionary Feature Synthesis”.
IEEE Transactions on System, Man, and Cybernetics — Part B 35.3 (June 2005), pp. 409-425.




Numeric registers Image registers

Operation Arguments 1 r2 R1 R2
Initial register contents (input
image after initial, genome-
dependent preprocessing) 17.0 12.0
1 Scalar subtraction r1, 12, [r1] l /
50 /
2 Shift the mask towards adjacent [R1], [r1]
local brightness maximum
24.5 [
3 Scalar maximum r2,r1,[r1] l{
24,
4 |2 norm between image and R2, [r2]
itself (global)
5 Move mask's lower right corner  [R2], r2, r2
to specified point
6 Vertical Previtt filter (global) R2, [R1]

7 Move mask to the pixel of
maximum brightness

R1},[r2],[r2)

8 L1 norm between image and
itself

R1,R1,[M]

Final feature values

25



Deep neural networks for image
analysis

26
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Detector’s response

Liskowski, Pawet, and Krzysztof Krawiec. “Segmenting Retinal Blood Vessels With Deep Neural Networks.” 28
IEEE Transactions on Medical Imaging 35, no. 11 (November 2016): 2369-80. https://doi.org/10.1109/TMI.2016.2546227.
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Central vessel reflex

e Light bounces off top surface
of vessels particularly strongly
e Source of common errors

73\\

30



OCT images

Avg1/1




Detection of blood vessels in OCT

Optical coherence tomography

32



Detection of blood vessels in OCT

Karol Karnowski, Anna Ajduk, Bartosz Wieloch, Szymon Tamborski, Krzysztof Krawiec, Maciej Wojtkowski, and Maciej Szkulmowski. “Optical coherence 33
microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos”. In: Scientific Reports 7.1 (2017), p. 4165.


https://docs.google.com/file/d/1IHb7u56ywIFaz-QGfGk0Tp0Q5OOV7DAc/preview

End-to-end
diagnosing
support

Ophthalmology

\;\ nature

medicine

Article  Published: 13 August 2018

Clinically applicable deep learning for
diagnosis and referral in retinal disease

Jeffrey De Fauw, Joseph R. Ledsam, [...] Olaf Ronneberger

Nature Medicine (2018)  Download Citation &

Abstract

The volume and complexity of diagnostic imaging is increasing at a pace
faster than the availability of human expertise to interpret it. Artificial
intelligence has shown great promise in classifying two-dimensional
photographs of some common diseases and typically relies on
databases of millions of annotated images. Until now, the challenge of
reaching the performance of expert clinicians in a real-world clinical
pathway with three-dimensional diagnostic scans has remained
unsolved. Here, we apply a novel deep learning architecture to a
clinically heterogeneous set of three-dimensional optical coherence
tomography scans from patients referred to a major eye hospital. We
demonstrate performance in making a referral recommendation that
reaches or exceeds that of experts on a range of sight-threatening
retinal diseases after training on only 14,884 scans. Moreover, we

34



End-to-end
diagnosing
support

e Ophthalmology
e Dermatology

ANNALS « e
ONCOLOGY ESMD:==

Issues More Content ¥ Submit ¥ Purchase Advertise ¥ About ¥

Article Navigation

EDITOR'S CHOICE
Man against machine: diagnostic performance of a deep learning

convolutional neural network for dermoscopic melanoma recognition in
comparison to 58 dermatologists @
H A Haenssle &, C Fink, R Schneiderbauer, F Toberer, T Buhl, A Blum, A Kalloo, A Ben Hadj Hassen, L Thomas, A Enk, ... Show
more

Author Notes
Annals of Oncology, Volume 29, Issue 8, 1 August 2018, Pages 1836-1842, https://doi.org/10.1093/annonc/mdy166
Published: 28 May 2018

Conclusions

For the first time we compared a CNN’s diagnostic performance with a large international group of 58
dermatologists, including 30 experts. Most dermatologists were outperformed by the CNN. Irrespective of any
physicians’ experience, they may benefit from assistance by a CNN’s image classification. 35



End-to-end
diagnosing
support

e Ophthalmology
e Dermatology
e Cardiology

@PLOS | Sl Publish ~ About Browse

& OPEN ACCESS  f§ PEER-REVIEWED

RESEARCH ARTICLE

Can machine-learning improve cardiovascular risk prediction
using routine clinical data?

Stephen F. Weng B3 [E]. Jenna Reps B, Joe Kai [, Jonathan M. Garibaldi [f§, Nadeem Qureshi

Published: April 4, 2017 « https://doi.org/10.1371/journal.pone.0174944

Conclusions
Machine-learning significantly improves accuracy of cardiovascular risk prediction, increasing

the number of patients identified who could benefit from preventive treatment, while avoiding
unnecessary treatment of others.

36



End-to-end
diagnosing
support

Ophthalmology
Dermatology
Cardiology
Radiology

Cornell University

arXiv.org > ¢s > arXiv:1711.05225

Computer Science > Computer Vision and Pattern Recognition

CheXNet: Radiologist-Level Pneumonia Detection on
Chest X-Rays with Deep Learning

Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony Duan,
Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya, Matthew P. Lungren, Andrew
Y. Ng

(Submitted on 14 Nov 2017 (v1), last revised 25 Dec 2017 (this version, v3))

We develop an algorithm that can detect pneumonia from chest X-rays at a level exceeding
practicing radiologists. Our algorithm, CheXNet, is a 121-layer convolutional neural
network trained on ChestX-rayl4, currently the largest publicly available chest X-ray
dataset, containing over 100,000 frontal-view X-ray images with 14 diseases. Four
practicing academic radiologists annotate a test set, on which we compare the performance
of CheXNet to that of radiologists. We find that CheXNet exceeds average radiologist
performance on the F1 metric. We extend CheXNet to detect all 14 diseases in ChestX-
rayl4 and achieve state of the art results on all 14 diseases.

37






Can we learn without labels?

Can we reason about images
without supervision?

39



Unsupervised detection of anomalies



https://docs.google.com/file/d/1xVI94daoHeW8FOeQd8hzaGC3wD_RF4uh/preview

Variational Autoencoder

Qe X)) = (z|pe(x), 0p(x))
AL )

utput

Tuzel, Szymon. “Deep Learning for Anomaly Detection in Volumetric Computer Tomography,” 41
Masters Thesis, Institute of Computing Science, Poznan University of Technology, 2017.



Input Image Output Image
- p 1x8xgx8 1x8x8xpa g

Convolution Deconvolution
32x8x8x8 32x8x8x8

Upsampling
A2xdxdnd

Deconvolution
A2nAxdnd

Gliszczynski, Patryk. “Deep Autoencoders for Unsupervised Image Segmentation in Optical Coherence Tomography,’
Masters Thesis, Institute of Computing Science, Poznan University of Technology, 2018.

42
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Unsupervised segmentation via

autoassociation

Optical coherence tomography

Gliszczynski, Patryk. “Deep Autoencoders for Unsupervised Image Segmentation in Optical Coherence Tomography,” 44
Masters Thesis, Institute of Computing Science, Poznan University of Technology, 2018.



Unsupervised segmentation

Optical coherence tomography

45



Unsupervised segmentation

(a) CT Image (b) CT Label (c) Seg-CT-STL (d) Seg-CT (e) Seg-CT-noDA (f) Seg-CT-UDA

Dou, Qi, Cheng Ouyang, Cheng Chen, Hao Chen, and Pheng-Ann Heng. “Unsupervised Cross-Modality Domain Adaptation of ConvNets for
Biomedical Image Segmentations with Adversarial Loss.” ArXiv:1804.10916 [Cs], April 29, 2018. http://arxiv.org/abs/1804.10916.




A sample of capabilities
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Flgure 1: Generated samples on CelebA-HQ 256 x 256 (left) and unconditional CIFAR10 (right)

J. Ho, A. Jain, and P. Abbeel, Denoising Diffusion Probabilistic Models, 2020. http://arxiv.org/abs/2006.11239
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http://www.youtube.com/watch?v=O3616ZFGpqw

Software libraries and tools

Programming language: Python
e (though notice the usefulness of C/C++ implementations in some contexts)

Libraries:
e OpenCV, Numpy, Scikit
e Tensorflow+Keras

Other tools:
e Imaged and Fiji https://imagej.net/Fiji
e ImageMagick
e Jupyter notebooks

49
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Part 2:
“How part”:
Al and Machine Learning for CV



Introduction to neural networks



Module outline

What is a neural network?
Units and layers
Computational capabilities of neural networks

Training neural networks
Gradient descent

ok owbdh-=
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What is a neural network?
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What is [an artificial] neural network?

Definition: A number of interconnected, relatively simple elementary processing
units (‘neurons’).

e The expressive power stems from the architecture and the number of entities,
not from their individual capabilities.
o The ‘natural’ way of making a NN model more powerful is to equip it with more units.
e An alternative model of computation (bio-inspired, but very loosely).
e A machine learning model, which can be trained and queried.
e Model querying:
o Input data fed into network (input units).

o The data (‘signals’) propagate through the architecture
o Collecting model’s response from the output units.

55



Biological inspirations for ANNs

e More essential in the early days of the field, now largely forgotten.
o (or found largely irrelevant).

e ANNS’ units are very very crude models of biological neurons.

dendryty

btona
komarkowa / synapsy

soma

. kolaterale kohcowe

jadro komorkowe

Krzysztof Krawiec Jerzy Stefanowski. Uczenie maszynowe i sieci neuronowe. Politechnika Poznanska. Wydawnictwo, 2003, 2004

56



A bit of history

e Beginnings: 1940s (McCulloch and Pitts, 1943)

e First spring: Early days of Al
o Perceptron: (Rosenblatt, 1958)
o Hopfield networks
e Second spring: late 1980s — mid 1990s
o Parallel Distributed Processing: Explorations in the Microstructure of Cognition, by Rumelhart,
McClelland, and PDP Research Group, 1986,
e Then: Neural network winter
o Saturation of capabilities combined with insufficient performance on many real-world tasks.
o  Growing popularity and performance of other ML methods (support vector machines (SVM),
random forests, Bayesian models, etc.)
e Third spring: Big come-back: ~2005 and on

o New wave: Deep Learning
o Facilitated by conceptual developments, growing affordability of computing power and
increasing availability of data.

57



Key figures
Geoffrey Hinton
Yann LeCun At

Bengio, Hinton and LeCun Ushered in Major Breakthroughs in Artificial
Juergen Schmidhuber Intelligence
Yoshua Bengio
Michael Jordan
Andrew Ng
lan Goodfellow
Daphne Koller
Andrej Karpathy
Fei-Fei Li
Sebastian Thrun

Fathers of the Deep Learning Revolution Receive ACM A.M. Turing

S Hochreit Tos e Geoffrey Hinton Yann LeCun
epp ocnreiter Watch on (8 YouTube

® -
https://awards.acm.org/about/2018-turing



https://awards.acm.org/about/2018-turing

Current state of the domain

Currently: one of the most successful paradigms of Al and machine learning
(ML), particularly in:

o image analysis, pattern recognition, computer vision,
o natural language processing,
o generative models.

Brought the capability to handle (simulate, train, query) large, deep
(many-layers) networks.

Rich branch of research on the verge of Al, ML, and other disciplines (e.g.,
cognitive sciences)

A broad range of approaches and architectures: probabilistic, evolutionary,
spiking, counterpropagation, discrete, bidirectional, ...

Handles surprisingly well different data representations, both:

o fixed-size: vectors, matrices, images, tensors,

o variable-size: sequences, trees, graphs, text, ...
59



Units and layers



[Artificial] neuron (unit)

Linear unit: an aggregating function, typically a weighted sum of inputs:

Y= i Wiz +b
where W, — weights, b — bias

Convenient reformulation: .
Yy = Zi:() W; Ty

where x, is assumed to be constant (typically 1 or -1).

X1 x0=—1

X5 wW» X1

w3 X2 w2

act)| A y act()| )

X3

Xk Wk Xk Wik

61



Units: comments

e \Weighted sum of inputs sometimes referred to as excitation or activation.

o  Warning: the latter is often conflated with the output of a unit (after applying activation
function).

Weights = parameters.
Number of inputs = a hyperparameter.
Typically implemented in a stateless (memory-less) manner.

Implements a dychotomizer: divides the space of inputs into the positive and
the negative half-space.

Implication of linearity

e There is no point in composing linear units: their composition is a linear unit
(weighted sum of weighted sums).

e Nevertheless, occasionally used in contemporary architectures to reduce
computational costs or for other purposes (to be shown later). 62



Interlude: other types of excitations

More precisely: other ways of defining unit’'s excitation.

Radial unit: activation determined by a radial function, e.g.
|z — w|,

e Excitation captures the similarity of the input vector x to the weight vector w.

e Used in Radial Basis Function models (RBFs),
o An architecture designed for supervised or unsupervised clustering.

e Relatively rare nowadays.

63



Nonlinear unit

The weighted sum of inputs (‘activation’) is passed through a form of nonlinearity:

n
_ o Y= (D im0 WiT;)
where o is an activation function.

Composition of nonlinear units is not redundant anymore (compared to linear
units): it increases expressibility.

Types of nonlinearities (activation functions) used in ANNSs:

e Bounded codomain: typically S-shaped, squeezing functions :
o Bipolar: tanh, codomain [-1; 1]
o  Unipolar: sigmoid function, codomain [0; 1]

e Unbounded codomain: e.g., Rectified Linear Unit (ReLU): relu(x) = max(x; 0)

64



Activation functions

Sigmoid

o(z) = —

14e—=

tanh
tanh(z)

RelLU
max (0, x)

More about that later.

) |
' - -
- © o
°
S - ® -
b= - —
- © ©

Leaky ReLU

max (0.1, x)

Maxout

J
- ] 10

max(w{ T + by, wd z + by)

ELU

T x>0
ae®—-1) <0

10
N_/O
-2
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Layers

e In the ‘second spring’ of neural networks (late 1990s), the discourse was (still)
conducted mostly on the level of individual units ([artificial] neurons).

e However:
o NN and DL are paradigms for highly distributed, parallel information processing, so individual

units are rarely critical.
o Anindividual unit can be considered a degenerate layer (layer of size 1).
e Therefore, today we tend to talk in terms of layers.
o Units in a layer typically operate in parallel and perform the same computation.
o They may be differently parameterized, but don’t have to (see: weight sharing).

Examples:
m Dense layer: units have the same arity, but separate vectors of parameters.

m Convolutional layer: units have the same arity (and also ‘shape’) and share parameters.

66



Layers

A natural abstraction of the concept of unit: a layer.

e Neurons typically combined into layers (‘vectors’ of units), because:
o Asingle unit can produce only scalar output.
o  Vector outputs are often necessary.

e The simplest layers are one-dimensional, but sometimes we endow them with
some higher-dimensional topology:
o  matrix (2D)
o tensor (nD, n> 2)
e In practice, layer is the smallest unit of discourse in contemporary deep
learning.
o Note that a single unit can be considered a degenerate layer.

67



Layers vs. units

Convenient correspondence with linear algebra; for instance, a dense linear layer
with n inputs (x) and m outputs (y) implements matrix multiplication:

y=Wx

The elements w, of the matrix is the jth weight of the ith unit in the layer.

68



Layers vs. units

In most cases, a layer is just an ‘arrangement’ of units:
e Dense layer: a 1D ‘vector’ of units.
e Convolutional layer: a 2D ‘array’ of units.

However, some layers have more complex internal architecture:
e They encapsulate a smaller computation graph,
and so hide complexity.
e A form of modularization.
e Example: Recurrent architectures, e.g.
LSTM (Long Short-Term Memory unit/cell)




Computational capabilities
of neural networks



Important features of the neural computing paradigm

e Continuous
o Opens the door to the use of whole lot of maths (algebra, calculus, ...)
o Does not preclude handling discrete variables (via, e.g., output thresholding)
o Certain properties are formally provable (see next slide, for instance).
e Distributed, and hence:
o Easily parallelizable (even in training phase, see federated learning).
o Robust to local failures (kind of, mostly when implemented in hardware)
e Non-symbolic (sometimes referred to as subsymboilic)
o However, neurosymbolic systems start becoming popular in recent years.

71



ANNSs are universal approximators (Cybenko, 1989)

Let ¢ be a nonconstant, bounded, and monotonically-increasing continuous
function. Let | denote the m-dimensional unit hypercube [0,1]™, and C(l ) denote
the space of continuous functions on | .

Then, given any € > 0 and any function f € C(I ), there exists an integer N, real
constants vi,bi € [R and real vectors w, € R™, wherei=1, ..., N, such that we may
define

F(x) = Zij\il vigp(wlz +b;)

as an approximate realization of the function f, where f is independent of @; that is,

[F(z) — fz)| <e

forallx 1| .
m

Cybenko, G. (1989). "Approximation by superpositions of a sigmoidal function". Mathematics of Control, Signals, and Systems. 2 (4): 303-314. 72



ANNSs are universal approximators (Cybenko, 1989)

Summary: a linear combination of monotonic nonlinearities (e.g., an ANN with one

sigmoid layer followed by a linear layer) can approximate any bounded continuous
function f arbitrarily well.

Practical implication:
e |n principle, any function meeting the assumptions of the theorem can be
approximated by a 2-layer network (linear combination of N nonlinear units).
e Approximation error is only function of N, and can be arbitrarily reduced by
increasing the number of units.
However:
e Cybenko’s theorem confirms the existence of such approximation. Finding N
and ws is an open problem (intractable in general, see later).

e In practice, f is not given — we know only a sample of its behavior, i.e. the
training set.
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A note on expressibility

Universal approximation with Cybenko’s model may require unpractical number of
units N. In practice, we boost the expressive capabilities of ANNs by increasing
the number of layers. One of the possible/popular interpretations:

e A ssingle unit partitions the input space into two half-spaces.
Two layers can ‘carve out’ an arbitrary convex polyhedron in the input space.

A third layer can combine multiple convex regions into an arbitrary shape.
Single units may approximate logical operators: and, or, nor, ...

/
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The need for composition of nonlinearities

Even apparently simple problems are not linearly separable.
Example: the XOR problem.

Truth table (exhaustive ‘training set’):
Y

-y

x2 y=XOR(x1,x2)
0

X

0 0
0 1 1
1 0 1
1 1 0

Desired behavior of the model |
(in the classification sense, i.e. oy %
producing the output with the correct 1/ o
sign) cannot be realized with

X
a single layer. 1
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Layers can be arranged in arbitrary architectures

e Main line of division:
o Feed-forwarded
o Feed-back (e.g. recurrent, but not only those)

e Implications:
o The former are stateless, the latter stateful.
o Both types used in contemporary models.

e Note: Some architectures do not feature explicitly defined inputs/outputs

o E.g., the Hopfield network is a clique of units, each collecting signals from all units, including
itself).

Next slides: A few glimpses on some of the architectures presented in this course.
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Fully connected (FC), feed-forward architecture

Each unit from a given layer receives signals from all units in the previous layer.
e No connections to preceding layers.

) -
N
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Mixed convolutional+FC architecture

Fully connected, a.k.a. dense.
The first architecture of choice for problems of object/image recognition.

feature maps

input layer convolution pooling  convolution fully-connected
layer layer layers layers

78



Convolutional autoencoder (3-dimensional)

e Formally a special case of ConvNet (convolutions + dense layers).
e Trained via autoassociation, i.e. reproduce the input.

Output Image
Input Irnggg 1xsxaxpa 9

EJpsampling
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Recurrent cell

e Long short-term memory model (LSTM)
e Note: recurrence not explicitly visible in the diagram.
e The diagram shows only processing for a single time step.

—> Ct

ht
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Fully connected graph (clique) architecture

Each unit receives inputs from the outputs of all other units.

e Feedbacks possible

e Technically: a recurrent model (though mainly of theoretical importance)

e Notable example: Hopfield network

kK

Hopfield, J. J. (1982). "Neural networks and physical systems with emergent collective computational abilities". Proceedings of the National Academy

of Sciences. 79 (8): 2554-2558.






Introduction to Convolutional Neural
Networks



NN training in a nutshell

Model training/fitting = optimization of network parameters.
Neural networks are a special case of a machine learning model - hence the term

'model' appearing in the following slides.

Inputs:

1. Atraining set in the form of pairs (x,y), where

a. The xis the input to the model,
b. vy is the desired (expected) output corresponding to x,

2. A network architecture f, compatible with types of x and y

a. Parameters initialized by some method, usually small signed values (e.g., in [-0.1,0.1]).
b. Note: the distribution of initial weights can have a critical impact on the efficiency of the
learning process (e.g., different activation functions 'prefer' different distributions).

3. Aloss function L that quantifies how the model diverges from the desired
behavior exemplified by the training set. o




NN training in a nutshell

Typical training loop:

1.
2.
3.

Query the model on an example x, obtaining the output of the model y'=f(x)
Calculate the loss function L(y,y') and its gradient w.r.t. model parameters.
Correct the model parameters guided by the gradient descent (gradient
descent)
w<—Ww — ’l]g—i

where w is the vector of model parameters and n is the learning rate
hyperparameter.

If no stopping conditions are met, jump to 1.

Known as error backpropagation algorithm and stochastic gradient descent.

Gradient calculated analytically with specialized automatic differentiation
(autodiff) algorithms backed by libraries (Pytorch, TensorFlow, JAX, ...).
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NN training in a nutshell: Technical comments

Gradient descent is a heuristic — the gradient vector does not necessarily

point toward the global minimum of the loss function.

o Training may get stuck in a local optimum.
o However, local optima become less likely when the number of parameters is large.

Gradient descent is deterministic.

o However, the starting point (initial parameters) is drawn at random.
o The order of presenting examples is often randomized too.
o Advanced low-level implementations can dynamically reschedule operations, leading to
indeterminism.
m Recall that floating-point addition and multiplication is not associative: (a+b)+c # a+(b+c)

Examples often given in batches (minibatches).

Signals represented as vectors.

Model parameters stored as matrices.

Both vectors and matrices implemented technically as tensors.
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The concept of tensor

In modern deep learning, operations (as well as their implementations) are often
defined for an arbitrary number of dimensions:
e 1-dimensional (1D, e.g. time)
2-dimensional (2D, height x width)
3-dimensional (3D, height x width x depth)
4-dimensional (4D, height x width x depth x time)
etc.
Hence, the prevailing assumption is that the data processed by the individual
components are represented as tensors, or multidimensional arrays.
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The concept of tensor

A 2D raster image is a 2- or 3-dimensional tensor (3-dimensional if we
assume a separate dimension for the channels, which is the norm).

(@)

The input images and tensors transmitted between layers in network are technically no
different from each other, which is convenient.

For 2D images, convolutional layers (or entire models) work on batches
represented as 4-dimensional arrays (tensors) of dimensions:

(@)

(@)

(@)

(@)

N: batch (example number in the package)
H: height (height, Y coordinate)

W: width (width, X coordinate)

C: channel (channel, depth).

The two most common technical conventions: NHWC (channels last) and
NCHW (channels first)

(@)

NHWC often required, and more efficient in hardware implementations (e.g., Tensor Cores)
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Examples vs. receptive fields

e In Computer Vision, an example is usually an image (example = image)
e However, from the unit's point of view, a single example is a fragment of an

image visible in its receptive field.
o Thus, even within a single image, convolutional units learn simultaneously from multiple
receptive fields.
Each image conveys multiple examples.
o This makes learning of convolutional layers more efficient (in the sense of 'data-efficient'™) and
less prone to overfitting.

*Data efficiency refers to the ability of a machine learning method to produce an
effective model with a limited volume of learning data (usually measured by the
number of examples).
e More technically: the number of examples required to construct a
well-generalizing model.

89



Why neural networks for
computer vision?
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Motivations (1)

Motivations for using NNs/DL in image analysis and computer vision:

1.

Many of the operations used in image analysis are differentiable (e.qg.,
convolution), and therefore can be parameterized with gradient algorithms
typically used for NNs.

Many of the operations used in image analysis are local (based on a local
window of the image), and thus naturally parallelizable, which coincides with
the parallel/distributed information processing model typical for NNs (multiple
independent neurons/units).

We represent raster images as vectors, matrices and tensors, the processing
of which in NNs is very natural.
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Motivations (2)

Motivations for using NNs/DL in image analysis and computer vision:

1.

Opens the door to the rich repertoire of resources of modern machine
learning and deep learning, including architectures, training algorithms, etc.
Neural networks (and machine learning more broadly) address one of the
fundamental challenges of CV: the difficulty of designing and parameterizing

efficient algorithms/systems that solve specific tasks.
a. DL facilitates semi-automation of that process.

Ease of merging subnetworks/components with others, within a single

paradigm and technology, facilitating production of end-to-end solutions.

a. Also: bridging with other data modalities, e.g. automated image
captioning (see next slide).
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Types of architectures

Two main categories (from the point of view of image analysis):

1. Fully convolutional neural networks (CNNs, ConvNets)
e Consist only of convolutional layers and other layers that preserve the
locality of processing (such as maxpooling; more later).
e [It would be more appropriate to call them spatially local architectures]

2. Mixed architectures
e On top of layers that process image locally, they feature other components,
most often dense (fully connected) layers or other components.

See next 2 slides for details.
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Fully convolutional architectures (CNNs, ConvNets)

Typical applications:
e Image de-noising (image denoising)
e Feature detection
o E.g. feature detectors learned using generative adversarial networks (GAN) models
e Style transfer: transformation of an original image into a preset

aesthetic/artistic style
o E.g., the well-known Pix2pix model

e Image segmentation, including

o Semantic segmentation
o [object] instance segmentation

e Describing images in natural language (image captioning)

The list of applications and usage scenarios grows longer every year.
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Mixed architectures

Common applications:

e Classification
o Usually a stack of convolutional layers (convolutional stack), followed by a dense subnet,
aggregating information across the image.
e Regression
o E.g., assessment of image quality (e.g. in medical applications).
e Generating images (generative models, e.g., generative adversarial networks,

GANSs)
e Combining with deep natural language processing (NLP) models, e.g., in
terms of describing images (image captioning)
o  Often involves recurrent subnetworks, such as LSTM (Long Short-Term Memory) or GRU

(Gated Recurrent Unit) models.
o  Or transformer-type models (e.g., BERT).
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The convolution operation

Recall the definition of one-dimensional convolution:

k

g(x) = (f * M)() = Z,EJ 1]

where f is the image, M a mask (filter, kernel) of dimensions kxk.

M(h)f(z — h)

In traditional image analysis, it is assumed that M is a given, i.e. it was designed to
achieve a specific goal/effect, e.g.

e (Gaussian mask (normal distribution) purpose of de-noising,

e Sobel or Schar filter for edge detection,

e Laplasian to detect transitions through zero of the second derivative.
In neural approaches, M becomes part of the model and is subject to automatic
optimization (learning).
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Convolution versus convolution: Differences

In the following slides, we summarize the most significant differences between the
convolution operation used in traditional image processing and the convolutional
layers used in neural networks.
e lllustrating these differences will help us better understand the 'added value'
offered by neural models.
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Differences (1)

As in typical layers in neural networks, the outputs of units in convolution layers
are passed through a nonlinear activation function:

9(z) = act (Z’[EJ_PJ M(h) f(z — h))

2

This is necessary because the output of a convolutional layer is usually passed to
the inputs of the next layer (convolutional or not), and the units in that layer realize
the scalar product (dot product, weighted sum) of the inputs. A direct connection to
the next layer would be a composite of two linear operations, and this would miss
the point, since it could be replaced by a single convolution.
e Typical activation functions are s-shaped (squeezing functions), or the popular
Rectified Linear Unit (ReLU), i.e. act(v) = max(v, 0).
e \With new advances in deep learning, we can construct and effectively train
models with dozens of convolutional layers.
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Differences (2)

Like typical units in neural networks, convolutional units in convolutional layers are
equipped with a threshold (bias, offset, free parameter) b, which is also subject to
learning. That is, a convolution in DL is de facto defined as:

This is essential because:
e \We do not know in advance whether the input signals are zero-centered (i.e.
whether the average f=0), especially when the inputs to the layer come from

earlier layers in the architecture
o Inthe presence of a bias (lack of zero-centering), the algorithm can tune b to compensate for
that.
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Differences (3)

In traditional image analysis, we usually use single convolutions. In neural
networks, almost always:
1. We apply convolution to multiple input channels, summing the result of the

convolutions: {—J
glx) =22

=

where M_is the mask for channel ¢ and f_is the channel c of the input image.
2. We conduct many such multi-channel convolutions in parallel.
So a convolutional layer accepts an n-channel image at the input and produces an
m-channel image at the output.
e Each output channel is a linear combination (before the activation function) of
the input channels = a convolutional layer can 'mix' channels.
e The raster associated with one output channel is known as a feature map.
e The number of channels: depth [tensor] (depth).

Mc (h)fc(a3 o h)
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lllustration

Traditional convolution of a A convolutional layer applied to a
single-channel (scalar) signal 3-channel image: the unit
(image) aggregates the input channels into

a single output channel.
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lllustration

General operator: applying a
convolution to an m-channel image
(tensor) results in an n-channel tensor

(here m=3, n=2)

Any mandn

Note that this case should not be equated with a
three-dimensional convolution: m and n are
constant.
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Differences (4)

Implication of multichannel processing (previous slide): it becomes reasonable to
use convolution with a 1x1 mask/kernel.
e Such a mask does not realize spatial aggregation of the signal.

e Nevertheless, it aggregates the signal across channels
o (and transforms the result of this aggregation nonlinearly).
e Useful for reducing the number of channels, which in turn helps reduce the
number of parameters (weights) in subsequent network layers.
o The number of channels used in contemporary DL is often in orders of tens or even hundreds.

e Known in the literature as "1 by 1 convolutions"
o Of course, there is no point in applying 1x1 convolutions to single-channel images.
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lllustration: 1x1 convolution

Channels in the output tensor Observation:

aggregate the channel values in e A 1x1 convolution is equivalent to

the input tensor. No spatial applying a dense layer (dense,

aggregation. fully connected) to each pixel
independently.

e For this diagram, it would be a
dense layer consisting of 2 units,
each of which is equipped with 4
inputs.
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The number of parameters of a convolution layer

For a mask (kernel) of size kxk pixels, a convolutional layer with m input channels
and n output channels has a number of parameters equal to:
(*m + 1)n
For example, (3% *16+1)*32 = 4640
e Not much by today’s DL standards; dense layers often have many more
parameters.

e Moreover, this does not depend on the size of the input image.

o Technical implication: we can apply software components implementing convolutional layers
(e.g., Conv2D objects in TensorFlow) to images of any size.
o Image sizes can be determined 'on the fly'.

e Many studies have shown that k=3 is often sufficient, hence in practice, the

main determinants of the number of parameters are m and n.
o ... which indicates the usefulness of 1x1 splices (see previous slides).
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The concept of an effective receptive field

Example: Consider composing two convolutional layers A and B, both with mask
sizes of 3x3.
e Each unitin B depends on a 5x5 area in the image fed to A.
e \We say that the effective receptive field of the unit in B is 5x5.
In models with many convolutional layers,
the ERF can be very large.
e ... and often covers the entire input image.
e This is often desirable, allowing the model
to develop global features of the image.

The green unit in Layer 3 aggregates values within a mask in Layer 2.
Each unit in Layer 2 aggregates signals in a mask from Layer 1
(among others, the highlighted blue unit). The highlighted green unit
in Layer 3 has an ERF in Layer 1 marked with a dashed green line.
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Hyperparameters of convolutional layers (1)

Kernel size, k:

e The dominant setting in current practice: k=3

e Provides minimal spatial aggregation (for odd k; even k is not likely to be
used),

e Reduces the total number of required parameters.

Example: a 5x5 ERF can achieved with:
o  One layer with a 5x5 kernel = 52 +1 = 26 parameters
o Two layers with 3x3 kernels = 2(32 +1) = 20 parameters
The two-layer solution has fewer parameters, while involving additional nonlinearity between
the layers, which may allow more sophisticated features to be modeled.

In most implementations, k can be set independently for each spatial dimension
(height, width, ...), i.e. the masks do not have to be square.
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Hyperparameters of convolutional layers (2)

Padding: How to handle pixels for which the mask 'extends' beyond the input

tensor? Several variants:
e valid: we do not allow mask to extend beyond the tensor; consequently, the
output tensor is k-1 pixels smaller on each dimension
e same: we allow the extension: in such cases, the mask also aggregates

'virtual' pixels from beyond the image.
The values of such pixels have to be set somehow; the default solution:

complementing with zeros.
o May cause a sudden change in brightness at the edge of the image, resulting, for example, in
the appearance of apparent edges.
o Better* output: simulating image continuation outside the raster range by
m  Mirroring the edge portion of the image (odd or even mirroring), or
m Repeating edge pixels.

o *From experience: Not necessarily always better.
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Hyperparameters of convolutional layers (3)

Stride (step) of shifting the mask relative to the input tensor:

e stride = 1:
Default setting: as in traditional image processing.
e stride > 1:

The output tensor becomes stride times smaller.
o Note: when stride > k, certain pixels in the input tensor will be completely ignored.

e (0 <stride<1:;

Transposed/fractional convolution™.
o Often implemented independently, with a separate parameter (dilation)

In most implementations, stride can be set independently for each spatial
dimension (height, width, ...).

*Sometimes called (incorrectly) deconvolution - this term translates to 'unbundling’, and it means a completely different operation in signal processing.q g



Hyperparameters of convolutional layers (4)

Other parameters:

e Activation function
o ltis often embedded in a programming function (or object) representing the conv layer,
allowing a more efficient low-level implementation.
m For example, process profiling in TensorFlow: specialized low-level functions that
combine implementation of scalar product and thresholding (for ReLU activation)
e Channel grouping
o It forces aggregation only in groups of channels (unlike a typical layer, where each output
channel aggregates all input channels).
o A special case: channel separable convolution.

Parameters related to the learning algorithm:

e Initialization of weights
o The bias is sometimes treated differently.

e Normalizations (batch normalization, BN; layer normalization, LN)
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Visualizations of convolutions

https://qgithub.com/vdumoulin/conv arithmetic

Presents also the dilated convolutions.
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https://github.com/vdumoulin/conv_arithmetic

Other local operations

Similarly to convolution, they rely on spatial aggregation of signals.
e The result is still a spatial tensor (although it may have a different size).
e The number of channels usually preserved (processing takes place in each
channel independently).

Frequently used operations:
e Grouping/aggregation (pooling):
o Particularly popular: max pooling: output is the maximum from the values in the kxk window
o  Similarly: min pooling, average pooling, ...
o The 'max' operator used particularly often: strong response signals the presence of a feature
at a given image location.
m Particularly true for activation functions like RelLU.

e Image/tensor resampling
e Normalizations: per batch, per layer, per channel, etc.
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Max pooling: Examples

For a window size of 2x2, stride=2: For a window size of 2x2, stride=1:
3 21 8 0 3 21 8 0
4 | 8 8
411311 418 411311
E— 5 9 9
5(09]1 519 5(0f9]1
5 9 9
1 2 1 1 1 2 1 1

For a window size of 3x3, stride=1:
Max pooling is usually used with the

312]810 stride equal to the size of the mask
4111381 °1° (like the example in the upper left
50091 °1° corner of this slide).
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Pooling and gradient propagation

Signal pooling can impede backward gradient propagation.

The line of argument: consider the composition of the maximum operator with
three other functions f, g, and h:

h(max(f(z1),g(z2))

When f(x,) < g(x,), we have: )
max — 0

of
The chain of partial derivatives defining the partial derivative of h is zeroed:

Oh Omax Of -0
Omax Of O0x;

As a result, the parameters of f are not updated (in a given training step).
In max pooling, this means that the gradient is propagated to only one
pixel/element (location) in the input mask.
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Covariance of convolutional layers

Convolution, pooling and other operations typical for fully convolutional
architectures have in common the algebraic property of covariance.

An operation f is covariant with respect to some transformation operator T when it
commutes with it, i.e.
foT =Tof
For ConvNet architectures, T is image translation.
e As aresult, it does not matter whether we translate the input image and then
apply f to it, or the other way round (f being an arbitrarily complex ConvNet
architecture)
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Technical realizations

Currently dominant technologies in the market:

PyTorch

e Facebook's Al Research lab (FAIR). <) P)/TO rCh

e License: BSD
e https://pytorch.orqg/

TensorFlow
e Developed initially by Google Brain for Google's internal use.
In the public domain since 2015.

e License: Apache 1F TensorFlow

https://www.tensorflow.orag/
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Technical realizations
Dominant opinions:

PyTorch is more research-based, while TensorFlow is more technologically

mature on the 'production’ side.
New architectures (proposed in scientific articles and at conferences) are

prototyped slightly more frequently and quicker in PyTorch.

However, the balance of advantages and disadvantages depends on the context

and application.
e Both environments currently offer very similar capabilities, and require similar

efforts in preparing models.
e Attempts to integrate and communicate across platforms: Open Neural

Network Exchange (ONNX) https://onnx.ai/ O N N X
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Relation with programming languages

Deep learning coincides with new programming paradigms:

e Differentiable programming

o The program is treated as a computational graph, with nodes implementing differentiable
operations and edges reflecting the flow of data.
o The graph may be
m static (created/compiled once), or
m dynamic, built in the course of calculations, when data comes in (so-called eager mode).

e Probabilistic programming
Program variables become random variables.

Known representatives:

Church (based on LISP)
Figaro (based on Scala)
PRISM (based on Prolog)
Anglican (based on Clojure)

o O O O
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Example

An example of a computational graph
(TensorFlow), involving

e a matrix multiplication,

e adding,

e the RelLU activation function.

Contemporary environments and libraries offer
tools for analyzing, visualizing, as well as
optimizing such graphs (e.g. Grappler in
TensorFlow).

https://www.tensorflow.org/quide/intro_to graphs

identity_...
Identity

Relu_1

add_1
o
e

o
matmul_... Relu

A

p
matmulf..

119


https://www.tensorflow.org/guide/intro_to_graphs

Increasing capabilities of hardware

Hardware manufacturers compete at developing platforms oriented to 'tensor-like’
parallel processing.

Architectures are increasingly specialized; examples:
e TensorCores in contemporary GPUs (16b FP precision)
e NVidia's A100 processors: 9.7 TFLOPS
(used in the DGX A100, among others, pictured right)
e Tensor Processing Unit, TPU (Google): 45 TFLOPS
(mainly used in Google's cloud solutions).
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Increasing capabilities of hardware

The growing capabilities of processors bring with
them greater requirements for data, network, and
operational and storage infrastructure.

Example: characteristics of the DGX A100 server
(right).

These requirements often drive up prices more than
the computing units themselves (processors, cores).

SYSTEM SPECIFICATIONS

NVIDIA DGX A100

NVIDIADGX A100

640GB 320GB

GPUs 8x NVIDIA A100 8x NVIDIA A100

80 GB GPUs 40GB GPUs
GPU Memory 640 GB total 320 GB total
Performance 5 petaFLOPS Al

10 petaOPSINT8

NVIDIA 6
NVSwitches
System Power 6.5 kW max

Usage

CPU Dual AMD Rome 7742, 128 cores total,
2.25GHz (base), 3.4 GHz [max boost)
System Memory 2TB 1TB
Networking 8x Single- 8x Single-
Port Mellanox Port Mellanox
ConnectX-6 VPI ConnectX-6 VPI
200Gb/s HDR 200Gb/s HDR
InfiniBand InfiniBand
2x Dual-Port 1x Dual-Port
Mellanox Mellanox
ConnectX-6 VPI ConnectX-6 VPI
10/25/50/100/200 10/25/50/100/200
Gb/s Ethernet Gb/s Ethernet
Storage 0S:2x1.92TBM.2 0S:2x1.92TB M.2
NVME drives NVME drives
Internal Storage: Internal Storage:

30TB (8x 3.84 TB)
U.2 NVMe drives

15 TB (4x 3.84 TB)
U.2NVMedrives
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Selected milestones
of ConvNet architectures



AlexNet

ImageNet Classification with Deep Convolutional Neural Networks
Alex Krizhevsky, llya Sutskever, Geoffrey E. Hinton
http://arxiv.org/pdf/1409.0575
https://dl.acm.org/doi/10.5555/2999134.2999257

(NIPS 2012) (currently NeurlPS)
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Contributions

e Large and deep (by 2012 standards)
e Trained on 1.2M images

e Outperformed SoTA methods of the time.

e Second place in the ILSVRC-2012 competition

Architecture: convolutional-dense image classification model
e Five convolutional layers

Max pooling layers

Dropout (recently introduced at that time)

One of the first networks to use RelLU activation functions

~60M parameters

1000 classes (ImageNet LSVRC contest)
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Architecture

Deployed and trained on 2 GPUs (GTX 580, 3GB)
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Results

Effectiveness of ReLLUs

Summary of results:

| Model | Top-1 (val) | Top-5 (val) | Top-5 (test) |
SIFT + FVs [7] — — 26.2%
1 CNN 40.7% 18.2% —
5 CNNs 38.1% 16.4% 16.4%
1 CNIN* 39.0% 16.6% —_
7 CNNs* 36.7% 15.4% 15.3%

1 CNN - single CNN

5 CNN - averaging the predictions of 5 CNNs

Another important conclusion: depth is essential.
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Figure 1: A four-layer convolutional neural
network with ReLLUs (solid line) reaches a 25%
training error rate on CIFAR-10 six times faster
than an equivalent network with tanh neurons
(dashed line). The learning rates for each net-
work were chosen independently to make train-
ing as fast as possible. No regularization of
any kind was employed. The magnitude of the
effect demonstrated here varies with network
architecture, but networks with ReLLUs consis-
tently learn several times faster than equivalents
with saturating neurons.
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Top-5
characteristics
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VGG models

Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan, Andrew Zisserman
https://arxiv.org/abs/1409.1556

[The model named after the name of authors’ team that won the ILSVRC-2014
contest]
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Original contribution

Our main contribution is a thorough evaluation of networks of increasing depth
using an architecture with very small (3x3) convolution filters, which shows that a
significant improvement on the prior-art configurations can be achieved by pushing
the depth to 16—19 weight layers.

Implications: lower number of parameters, more efficient training, less overfitting.
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https://neurohive.io/en/popular-networks/vgg16/

224 x 224 x3 224 X224 x 64

112 X 128

56|x 56 x 256
28 X 28 x 512

TX T HXD12
14 x 14 X 512 1x1x4096 1x1x1000

v | o ) 3

@ convolution+RelLU

@ max pooling
) fully connected+ReLU

@ softmax
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Motivation

Compare architectures:

1. One convolutional layer with 5x5 receptive field

2. Two convolutional layers, with 3x3 receptive fields
(assume single-channel layers, for simplicity).

Both have the same effective receptive field: 5x5, so the same ‘spatial scope’.
However, in terms of the number of parameters:

1. 5°+1=26

2. 2(3°4+1)=20

The difference becomes only more prominent for greater receptive fields.

Conclusion: Small receptive fields can provide the same ERF at a lower number of
parameters. The network becomes deeper, but today we have algorithms that can
train deep architectures efficiently.
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The Inception Network

Going Deeper with Convolutions

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
hitps://arxiv.org/abs/1409.4842

e Further increase of depth, compared to earlier models.
e Modular architecture.
e Multiple output modules.

The origin of the name: the phrase
“‘we need to go deeper” from the Inception movie.

)«weuiiz‘li 1060

'
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https://arxiv.org/abs/1409.4842

Main features

Modularity: most of the architecture is made of multiple instances of the same

module (Inception module)
o Same architecture of the module, different parameterization.

Increased the depth and width of the network while keeping the computational

budget constant
o  More precisely: computational cost increases ~proportionally to the depth of the network.

Architectural decisions based on the Hebbian principle and the intuition of
multi-scale processing.
Specific variant/instance: GooglLeNet, a 22-layer Inception network
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Motivations

Arora et al. [2]:
If the probability distribution of the dataset is representable by a large, very
sparse deep neural network, then the optimal network topology can be
constructed layer after layer by analyzing the correlation statistics of the
preceding layer activations and clustering neurons with highly correlated
outputs.

o Related to Hebbian principle — Neurons that fire together, wire together [Donald Hebb, 1949]
If two convolutional layers are chained, an increase in the number of their

filters results in a quadratic increase of the number of weights.
o If the added capacity (weights) is used inefficiently (for example, if most weights end up to be
close to zero), then much of the computation is wasted.

o This could be addressed with sparse data structures, but today’s computing architectures are
inefficient for such structures.
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Motivations

How an optimal local sparse structure of a convolutional vision network can

be approximated and covered by readily available dense components?
o Assuming translation invariance => use convolutional building blocks.
o All we need is to find the optimal local construction and to repeat it spatially.

In the lower layers (the ones close to the input) correlated units would

concentrate in local regions.
o Clusters concentrated in a single region can be covered by a layer of 1x1 convolutions.

Smaller number of more spatially spread out clusters that can be covered by

convolutions over larger patches
o Hence also 3x3 and 5x5 convolutions.

All those layers concatenated into a filter bank’
Additional pooling operations performed in parallel to the above.
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Inception module: naive version

Filter
concatenation
/"‘
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

A

Previous layer

e The ratio of 3x3 and 5x5 convolutions to 1x1 should increase with consecutive
layers, as features become sparser and more spatially distributed.

e The challenge: large depth of concatenated filters. 199



GooglLeNet

e 22 layers deep (if counting only layers with parameters)
o 27 layers if also counting pooling

e Uses average pooling before the classifier (with additional linear layer)

Addressing the vanishing gradient problem:

e The strong performance of shallower networks on this task suggests that the
features produced by the layers in the middle of the network should be very
discriminative.

e By adding (to the ‘stem network’) auxiliary classifiers connected to these
intermediate layers, discrimination in the lower stages in the classifier was

expected.
o Additional source of training signal (gradient).
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GoogleNet: Bird's-eye view

141



Question
What happens to gradient at the branching points?

Assuming that the total loss is a sum of losses at the ends of branches, where the
model returns values y, and y.;:

L= Li(y1) + L2(y2)

The total derivative of loss function w.r.t. the vector w of weights/parameters of the
common part, where z is the output of the common part:

OL __ 0z 9y 0L, 8z 0ys 0L,
ow  Ow 0z Oy ow 0z Oy,
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Residual networks

Deep Residual Learning for Image Recognition
Kaiming He, Xiangyu Zhang, Shaoqging Ren, Jian Sun
https://arxiv.org/abs/1512.03385

e First well-known study introducing the concept of residual connections.
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Residual networks

e Reformulate the training task for a layer as learning a residual function with
reference to the layer’s inputs, instead of learning the original function.

e The authors use residual nets with a depth of up to 152 layers
o 8 layers deeper than VGG nets.

e 1st place in the ILSVRC 2015 classification contest.

e st places in the following contests:
o ImageNet detection, ImageNet localization, COCO detection, COCO segmentation.

https://www.image-net.org/ https://cocodataset.org/ 145
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] n X
Motivations i
weight layer
o Let F(x) Jrelu
o H(x) be the mapping to be fit by a subnetwork/submodel welghnlayer

(a few stacked layers, not necessarily the entire net), F(x) + x
with x the input to that submodel.
o Assume that x and H(x) have the same dimensions (‘shapes’).

If multiple nonlinear layers can asymptotically approximate H(x), then it is
equivalent to hypothesize that they can asymptotically approximate the
residual function, i.e., H(x) - x

o Let's explicitly let these layers approximate a residual function F(x) := H(x)-x.
In other words: after successful training, the subnetwork will implement the

function F(x)+x.
Although both submodels (direct and residual) should be able to

asymptotically approximate the desired function (as hypothesized),
o the difficulty of learning might be different (due to ‘shortcuts’ in gradient flow).
o This is particularly true when chaining residual modules.

relu

*
identity
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X

\ 4

Basic Resnet block

weight layer
Mapping realized by a Resnet building block: F(x) ) <
weight layer identity

y =F (x{Wi}) +x

where {W } are the parameters of F.

Q: What if, for some reason, the shapes of F and x are different?
A: We can still realize a ‘pseudo-shortcut’: a linear mapping that uses a (trainable)
matrix of parameters W:

y = F (x,{W;}) + W,x

Also: Notice the presence of RelLLU activation after the summation.
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Basic building block

The specific building block used by the authors:

X
weight layer
F(x) l relu x
weight layer identity
F(x) +x

Similarly to GooglLeNet, Resnets are thus modular networks.

e However, this is ‘just’ structural modularity:
o Each instance of a Resnet block has the same architecture, but has separate weights and
thus implements a different function (there’s no weight sharing between individual building
blocks/modules). 148
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Other elements

Batch normalization after each convolution (before activation)

Two options for the dotted connections:
e A: Parameter-free: The shortcut still performs identity mapping, with extra
zero entries padded for increasing dimensions (no extra parameters)
e B: Parametric: Each output channel is a linear combination of input channels.
The projection shortcut is used to match dimensions, using 1x1 convolutions:

y = F (x,{W;}) + W,x
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Some reSUItS model top-1 err. top-5 err.
VGG-16 [41] 28.07 0.33

(A) zero-padding shortcuts are used for GoogLeNet [44] : 9.15
increasing dimensions, and all shortcuts are PReLUmnet[13] | 24.27 43
f plain-34 28.54 10.02
parameter iree ResNet-34 A 25.03 776
(B) projection shortcuts are used for ResNet-34 B 24.52 7.46
i ing dimensions, and other shortcuts Reser34.€ 21y 740
Increasing di ’ ResNet-50 22.85 6.71
are identity; ResNet-101 2175 6.05
ResNet-152 21.43 5.71

(C) all shortcuts are projections

Table 3. Error rates (%, 10-crop testing) on ImageNet validation.
VGG-16 is based on our test. ResNet-50/101/152 are of option B

Trained with Ordinary SGD with that only uses projections for increasing dimensions.
momentum!

Experimented also with ensambles;
networks up to 1000 layers (found it to be
worse than 110-layer net)
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Why do ResNets work?

e They address the vanishing/exploding gradient problem.
o Each model component with partial derivatives close to zero increases the risk of vanishing
gradient.
o Squeezing activation functions are particularly notorious in that respect (gradient close to zero
almost everywhere).

e This implicitly allows maintaining relatively low depth (number of
channels/dimensions) along the network
o Projections used only thrice in the architecture (cf. figure).

e Does modularity help?
o  An open question.
o Definitely eases automation of architecture optimization: some design choices cease to be
available (part of architectural hiperparameters are fixed).

Related: Wide Residual Networks (Wide-Nets) http://arxiv.org/abs/1605.07146:
emphasize Resnet width rather than depth. See the module Auxiliary topics. 153
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Fully convolutional architectures
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Fully convolutional networks (ConvNets, FCN)

Models that comprise exclusively local operations, i.e. mostly:
e Convolutions and transposed convolutions

e Pooling

e Re-sampling (down- and upsampling, interpolation).

A fully convolutional architecture F:
e Can handle images of arbitrary size.

e |s covariant with respect to translation
o F and translation commute.
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Motivations

Fully convolutional architectures are applicable in any usage scenario that
requires image-to-image mapping, i.e. any image processing.

Prominent examples:
e Segmentation
o Including semantic segmentation

e Denoising
o The network serves as a denoising filter.

o Can adapt in training to the characteristics (distributions) of a given class of images/domain.

e Superresolution

e Transfer/translation of local characteristics, e.g. style transfer
o Also: pseudocoloring, texture filling, and more
o Semantic transformations, e.g. synthesizing an aerial image based on a map.
m See, e.g., so-called Pix2Pix models
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Applying FCNs to image processing tasks

Advantages:

e Each instance of effective receptive field is a separate example.
o E.g., asingle convolutional layer with 3x3 filters, when applied to a 100x100 pixel image,
processes 982=9604 examples simultaneously
m (albeit those examples are not independent).

e Each parameter of the model receives gradient from all locations in its ‘impact

field’ (the set of locations in the output image that depend on that parameter)
o Implication: stronger training signal than when the loss is defined only on the level of entire
images (e.g. image classification or regression).

Challenges:
e Border effects: the larger ERF, the more prominent.
e Input-output image pairs have to be precisely spatially coreqistered.
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Image segmentation has many faces ...

e ‘Ordinary’ segmentation
o The algorithm is only required to delineate regions that are perceptually distinct.
e Semantic segmentation
o The algorithm is expected to work with semantics-rich labels, like sidewalk, car, person, road
sign, ...
e Object instance segmentation
o Multiple instances of the same type of entity should be delineated.




DNN-based approaches to segmentation

Main categories of representatives:
e Patch-based - a ‘naive’ approach
o Replaces the segmentation task with classification of individual pixels based of image patches

e Fully convolutional (ConvNet, FCNN)

o Performs segmentation of all image patches in parallel

e Recurrent
o Uses recurrent layers/cell/networks to ‘sweep’ the input image.

e Attention-based models
o Have a separate module that ‘actively seeks’ objects in the image.

160



161



U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger, Philipp Fischer, Thomas Brox
https://arxiv.org/abs/1505.04597

e One of the most popular ‘design patterns’ for fully convolutional architectures.
e Proved very effective in a large number of applications.
e 10k citations on arXiv (as of Dec 2021)
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The architecture

Uses ConvNet to supplement a usual contracting network by successive
expanding layers, where pooling operators are replaced by upsampling
operators.

Main building blocks:

o a contracting stack to capture context and construct higher-level features,
o asymmetric expanding stack that enables precise localization,
o ‘copy&crop’ connections bridging the contracting path with the expanding path.

The network does not have any fully connected layers and only uses the valid

part of each convolution.
o Padding via mirroring
at the edge of the image.
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Stride and fractional convolutions

Stride controls the speed of shifting the mask (receptive field) over the input tensor

comp relative to the speed of moving over output tensor.
size(output) = stride*size(input)

e stride=1 = size(output) = size(input)
e stride>1 = size(output) < size(input)
o Example: stride=2 implies skipping every second receptive field in the input

e stride<1 = size(output) > size(input)
o Example: stride=1/2 implies skipping every second receptive field in the output

Naming convention:
e stride=1 : convolution

e stride<1 : fractional convolution (because in this case stride=1/k, KEN)
165



Transposed convolutions

The distinction between the ‘regular’ convolution and the transposed convolution
(up-conv) concerns the ‘fan-in’ and ‘fan-out’, i.e. the flow of signals.
e Regular convolutions are contracting: a kxk receptive field in input is
mapped/projected to a single element (unit, location) in output.
e Transposed convolutions are expanding: a single input (unit, pixel) is

mapped/projected onto a rectangular region in the output tensor.
o  The contributions from individual inputs are subsequently summed.

Transposed convolutions are sometimes (erroneously!) called deconvolutions.

Unet uses transposed fractional convolutions in the expanding path.

Recommended: helpful animated illustrations of various types of convolutions
https://github.com/vdumoulin/conv_arithmetic 166
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Some comments on U-net

e Advantages: Trains effectively from small samples.
o (like most pure ConvNets)

e Can be trained to label:
o Regions (interiors)
o Region borders
e Q: Is this an autoencoder?
e Important: The ‘copy and crop’ connections are not equivalent to residual
connections.
o However, they definitely allow part of gradient flow along a shorter path.

e Thisis a ‘fully ConvNet’ model:
o  All operations (convolutions, max pooling, up-conv) rely on local receptive fields.
o Therefore, U-nets are scalable/applicable to images of arbitrary dimensions.
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U-Net's weighted target on Hela cells image

a . | C % d

Fig. 3. HeLa cells on glass recorded with DIC (differential interference contrast) mi-
croscopy. (a) raw image. (b) overlay with ground truth segmentation. Different colors
indicate different instances of the HeLa cells. (c¢) generated segmentation mask (white:
foreground, black: background). (d) map with a pixel-wise loss weight to force the
network to learn the border pixels.
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Some results

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth

(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).
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Some results

Name PhC-U373 DIC-HeLa
IMCB-SG (2014) 0.2669 0.2935
KTH-SE (2014) 0.7953 0.4607
HOUS-US (2014) 0.5323 -
second-best 2015 0.83 0.46

u-net (2015) 0.9203 0.7756

The metric: IOU = Intersection over Union
e A: detected region

e B:target region J(A,B) = [ANB|

Final comment:
e The original paper assumed the model has to label regions.
e UNet works also quite well for labeling borders.

|ANB|

— JAUB| — JA[+|B|—|ANB
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Challenges



*People saying Al will take
over the world*

My neural network:
DOG

| MLIinPL

1 ASSOCIATION




Challenges: Overfitting

Models are not guaranteed to generalize well.

g 1 2 3 4 5 Median confidence
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Nguyen A, Yosinski J, Clune J. Deep Neural Networks are Easily Fooled: High Confidence Predictions
for Unrecognizable Images. In Computer Vision and Pattern Recognition (CVPR ’15), IEEE, 2015.
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Anish Athalye, Logan Engstrom, Andrew llyas, Kevin Kwok, Synthesizing Robust Adversarial Examples.
Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. 176



Challenges: Explainability

Decision-making is not readily explainable:
e Decision-criteria are distributed across many (tens or hundreds of

thousands of) units (‘artificial neurons’)
e Eliciting specific reasons why some decision has been taken is a

time-consuming challenge even for highly experienced data analysts.
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Closing remarks



ONE/DOES/NOT, SIMPLY,GOHOME

Take home messages

e Al has a strong foothold in Computer Vision

e Deep Learning architectures excel at achieving _
state-of-the-art performance in many challenging CV tasks WITHOUT A TAKE HOME WESSAGE

e Yet, there are certain risks and limitations that one needs to be aware of:

o Limited explainability — models are largely opaque.

o Unpredictable behavior in corner/edge cases and long tails of distributions — guardrails are
often inevitable.

e Nevertheless, continuous progress is being made, and interesting new

avenues keep emerging:

o Physics-informed machine learning
o Neurosymbolic architectures

e Exciting times (for Al in CV) to live in!
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