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Abstract

Rate-dependent material models are used in civil engineering when a dynamic response
of structure has to be examined. These models, used in conjunction with, e.g. soft-
ware suites for finite element analysis, provide a powerful tool for solving dynamic
problems. An effective approach should include material properties such as anisotropy,
non-locality and non-normality of the inelastic flow. The goal of this treatise is to
develop a comprehensive mathematical model that could be successfully applied for
special cases when high-strain-rate deformations in metals, are considered.

The Perzyna viscoplastic model in its extended constitutive form, which accounts
for strain-rate hardening, microdamage mechanism, thermo-mechanical coupling and
the fracture criterion, was chosen for this research. Fractional derivatives were used
for the aforementioned model to introduce the non-local and anisotropic properties.
The numerical analyses were conducted at the material point level to evaluate the
impact that the fractional parameters have on the dynamic material response. Next,
the dynamic tests were carried out for a full three-dimensional dog-bone specimen for
various parameters and loading velocities. In this last case, the strain localization was
observed and studied. Moreover, the evolution of the state variables in the Perzyna
formulation was closely examined.

Results of the numerical analysis have shown that the fractional viscoplastic model
exhibits non-locality, as well as, the anisotropy in the level and direction of deforma-
tion. Moreover, the directional behaviour was also found in the dissipation of me-
chanical wave energy. The anisotropy was also observed in the strain localization and
deformation modes of the dog-bone specimen. The non-locality and directional depen-
dence had an impact on the evolution of the state variables of the Perzyna model. In
conclusion, the results reflect the one obtained in the available experimental studies.

Based on the above, the thesis of this dissertation, which stated that the fractional
formulation of the viscoplastic model improves the description of metals behavior under
dynamic loading, can be assumed to be valid.
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Streszczenie

Modele konstytutywne uwzględniające wpływ prędkości deformacji są stosowane w in-
żynierii lądowej w zagadnieniach analizy dynamicznego zachowania konstrukcji. Ich za-
stosowanie w programach wykorzystujących np. metodę elementów skończonych dostar-
cza zaawansowanych narzędzi analizy. Ponadto prawa konstytutywne winny, dla ww.
klasy zagadnień, uwzględniać anizotropię materiału, efekty nielokalne oraz niesto-
warzyszone prawo płynięcia plastycznego. Celem niniejszej pracy jest opracowanie mo-
delu obejmującego wspomniane cechy, w szczególności dla materiałów metalicznych.

Do badań wybrano lepkoplastyczny model Perzyny, który uwzględnia umocnie-
nie zależne od prędkości deformacji oraz mechanizm mikrouszkodzenia z wpływem
efektów termicznych (proces adiabatyczny). Zastosowano w nim uogólnienie oparte na
pochodnych niecałkowitego rzędu w celu rozbudowania go o właściwości nielokalne
oraz anizotropowe. Przeprowadzono analizy numeryczne na poziomie punktu mate-
rialnego oraz symulacje testu dynamicznego rozciągania dla trójwymiarowej próbki
przy różnych parametrach modelu oraz różnych prędkościach wymuszenia. W ostatnim
przypadku dużo uwagi poświęcono badaniom procesu lokalizacji odkształceń. Ponadto
dokładnie zbadano ewolucję parametrów wewnętrznych zaproponowanego prawa kon-
stytutywnego.

Wyniki analiz numerycznych potwierdziły, że model lepkoplastyczny wykorzystu-
jący pochodne ułamkowe wykazuje efekty nielokalne, a także anizotropię w intensyw-
ności i kierunku deformacji. Zaobserwowano także kierunkową naturę w rozprasza-
niu energii fal mechanicznych. Anizotropia została także zauważona w lokalizacji od-
kształceń plastycznych oraz kształtach, jakie przyjmowała strefa deformacji. Efekty
nielokalne i zależne od kierunku zauważono także w ewolucji parametrów wewnętrznych
rozważanego prawa konstytutywnego. W konkluzji wyniki odzwierciedlają rezultaty
uzyskane w dostępnych w literaturze badaniach eksperymentalnych.

Na podstawie uzyskanych rezultatów można przyjąć, że teza tej rozprawy, w której
stwierdzono, iż sformułowanie modelu lepkoplastycznego wykorzystującego pochodne
ułamkowe poprawia opis zachowania metali obciążonych dynamicznie, jest prawidłowa.
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List of symbols and abbreviations

The following notation is used in this dissertation:

• normal-face Greek or Latin letters for scalars,

• bold-face Greek or Latin letters for vectors and second ordered tensors,

• uppercase letters for Lagrangian and lowercase letters for Eulerian variables.

Symbol/Abbreviation Description First use

a left bounds of the proper integral page 36
a vector form of the left bound of the proper integral page 42
a acceleration page 22
b right bound of the proper integral page 36
b vector form of the right bound of the proper inte-

gral
page 43

b̃ vector of body forces page 22
B shape function derivative matrix page 31
B physical body page 14
∂B boundary surface of the body B page 21
Bα

P general kernel differential operator of Caputo type page 36
cd dilatational wave speed page 34
cp specific heat page 61
ĉ elastic wave propagation velocity page 40
c left Cauchy-Green tensors page 17
C right Cauchy-Green tensors page 17
d symmetric part of the spatial velocity gradient page 19
da infinitesimal area element in the current configur-

ation
page 17

df density of forces acting on an infinitesimal surface page 19
dv infinitesimal volume element in the current config-

uration
page 17
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dx infinitesimal line element in the current configura-
tion

page 16

dA infinitesimal area element in the reference config-
uration

page 17
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page 17
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page 16

Dα Riesz-Caputo fractional derivative of the α order page 37
C
aD

α
t left-sided Caputo derivative page 36

C
tD
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b right-sided Caputo derivative page 37

e Almansi strain tensors page 17
ec thermodynamic state variable page 24
êi Eulerian base page 14
E Young’s modulus page 42
E Green strain tensors page 17
Êi Lagrangian base page 14
E internal energy page 24
E3 three-dimensional Euclidean point space page 14
f yield function page 38
f (n) classical n-th order derivative page 38
f̂ specific load matrix page 32
F static yield condition page 38
F deformation gradient page 16
F−1 inverse deformation gradient page 16
Ḟ time derivative of the deformation gradient page 19
F force vector page 22
g∗ void growth material function page 60
G Lamé’s second parameter, shear modulus page 42
Geq direct Galerkin expression page 29
Ĝeq finite approximation of direct Galerkin expression page 30
Ĝe part of Galerkin expression for element of domain

Ω

page 30

Ĝte part of Galerkin expression for element of the
boundary segment ∂Ωt

page 30

G total production of entropy page 26
h entropy flux vector field page 26
ha width of the subinterval in the left-sided Caputo

derivative
page 37

hb width of the subinterval in the right-sided Caputo
derivative

page 38

ha vector form of the subinterval width in the left-
sided Caputo derivative

page 43
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t left Riemann-Liouville fractional integral page 36
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J1 first invariant of the stress tensor page 60
J ′
2 second invariant of the stress deviator page 39

J̇ time derivative of the Jacobian determinant page 19
J angular momentum vector page 23
J̇ time derivative of angular momentum page 23
kα kernel function page 35
Kα

P K -operator page 35
K kinetic energy page 24
l length-scale parameter page 40
l spatial velocity gradient page 18
Le,min smallest element dimension in the mesh page 34
L̇ time derivative of a linear momentum page 22
Le stiffness matrix page 38
m total mass of a body B page 21
m scalar rate-sensitivity parameter page 40
ma number of subintervals in the left-sided Caputo

derivative
page 37

mb number of subintervals in the right-sided Caputo
derivative

page 38

ṁ time derivative of mass page 21
M matrix of the classical first-order partial derivatives page 45
M momentum vector page 23
M̂ mass matrix page 32
n normal vector perpendicular to da surface in the

current configuration
page 17

np number of points in the numerical approximation page 43
N element shape function page 31
N normal vector perpendicular to dA surface in the

reference configuration
page 17

p, q real numbers page 35
p direction of viscoplastic flow page 40
p momentum vector page 22
ṗ time derivative of momentum page 22
P particle of a body B page 14
P matrix of coefficients for numerical approximations

of fractional derivatives
page 44
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Ĝte part of Galerkin expression for element of the
boundary segment ∂Ωt

page 30

G total production of entropy page 26
h entropy flux vector field page 26
ha width of the subinterval in the left-sided Caputo

derivative
page 37

hb width of the subinterval in the right-sided Caputo
derivative

page 38

ha vector form of the subinterval width in the left-
sided Caputo derivative

page 43

xv

Symbol/Abbreviation Description First use

hb vector form of the subinterval width in the right-
sided Caputo derivative

page 43

aI
α
t left Riemann-Liouville fractional integral page 36

tI
α
b right Riemann-Liouville fractional integral page 36

Ig stress intensity invariant page 60
IP2 second invariant of an inelastic strain-rate tensor page 39
J Jacobian determinant, determinant of F page 16
J1 first invariant of the stress tensor page 60
J ′
2 second invariant of the stress deviator page 39

J̇ time derivative of the Jacobian determinant page 19
J angular momentum vector page 23
J̇ time derivative of angular momentum page 23
kα kernel function page 35
Kα

P K -operator page 35
K kinetic energy page 24
l length-scale parameter page 40
l spatial velocity gradient page 18
Le,min smallest element dimension in the mesh page 34
L̇ time derivative of a linear momentum page 22
Le stiffness matrix page 38
m total mass of a body B page 21
m scalar rate-sensitivity parameter page 40
ma number of subintervals in the left-sided Caputo

derivative
page 37

mb number of subintervals in the right-sided Caputo
derivative

page 38
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ü spatial acceleration field in terms of displacement page 28
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δū virtual nodal displacement page 31
δu virtual displacement field (small strain theory) page 28
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Chapter 1

Introduction

1.1. Motivation

During the last decades, the development of new materials does not seem to slow down.
It is accompanied by the rise of new design techniques and engineering tools, such as
simulation software packages that utilize the finite element method (FEM). This type
of software is used in the numerical analysis of both elastic and inelastic response of
materials, but it relies heavily on mathematical models that govern their behavior.
Reliable material models in conjunction with damage mechanics became an industry
standard for assessing the safety of new and existing structures. With the increase in
the availability of computers, their portability and computing power, programs using
FEM have become a useful tool in civil engineering.

The vast majority of problems in civil engineering revolve around static loading
cases. There are, however, some situations where a dynamic response of a whole struc-
ture, or its parts, is of particular interest. Two types of use cases for dynamic models
can be distinguished. The first case concerns buildings or miscellaneous engineering
structures that have a high probability of being exposed to explosion or blast. The
other instance concerns the numerical analysis of structures where some subset of their
elements had lost the load-bearing capacity due to a dynamic failure – cf. Figs. 1.1
and 1.2. Numerical analyses of both design scenarios require rate-dependent models
to reliably predict the dynamic response.

Comprehensive models also have to address the problems of anisotropy and non-
local properties. The reason that these properties are important is that they occur in
most of the materials traditionally used in civil engineering. Also, they can be found
in new materials that are being adopted in modern engineering. The development of
a formulation that would combine these two complex effects could increase the safety
of constructions at the same time lowering the price of the designing process. From

1
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Figure 1.1. Effects of the 2011 Tohoku Japan Earthquake. Fracture of top gusset plate
in the 2-story parking garage [165]

the practical point of view, the model should promote simplicity by restraining the
number of additional parameters, and simultaneously ensuring that previously obtained
parameters would not require determination in an afresh study.

The development of an effective numerical model that can combine complex mate-
rial properties, dynamic response and rapid growth of computational power is a key
step towards tackling the more complicated problems in civil engineering. The reason
for an extensive literature outlook, given in the subsequent section, is twofold. It helps
to answer the question if such a model already was proposed, and if not, it serves as a
foundation for further discussion.

1.2. State of the art

1.2.1. Introduction

In the previous section, the reasons behind this study were presented. This part offers
an in-depth overview of research conducted in the fields that are relevant in a search
of new numerical models. Metals undergoing dynamic inelastic deformation are of
particular interest in this dissertation. As it was mentioned before, anisotropy and
non-locality are common properties that exist in natural and man-made materials.
The heterogeneity, that stems from these properties, is important in reproducing ma-
terial behaviour as it contributes to the nucleation and evolution of the shear bands.
The quantitative reproduction of strain localization is difficult, especially for dynamic
loading, because it requires a model suitable for adiabatic plastic deformation in rate-
sensitive materials. Perzyna’s theory of viscoplasticity is a well-established approach
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Figure 1.2. Structural failure after car crash into column in Placentia, California [142]

for such problems, however, it still could benefit from including non-normality and
anisotropy in its scope. The non-local nature of the fractional calculus may offer a so-
lution to these limitations as its usefulness was presented in various applications. The
above topics are extensively reviewed in the subsequent sections.

1.2.2. Anisotropy and non-locality

Non-associated flow implies that the inelastic strain tensor is not normal to the yield
surface [133]. Depending on the material, this rule will have different physical interpre-
tations. In geomaterials, non-normality is associated with dilatancy that occurs in the
soil searing process. In metals, it stems from nucleation of dislocations [30, 161, 222],
nucleation and growth of voids under plastic deformation or grains breakup into dis-
oriented, blocky subgrains [82, 100, 181]. The non-homogeneous structures that result
from these micromechanical phenomena create or intensify anisotropy in the mate-
rial. In certain cases, anisotropy can be induced by plastic deformation and develop in
metals and geomaterials [6, 34, 56, 89, 118].

Non-associated flow rule is a prerequisite for building reliable material models for
materials such as concrete [80, 86, 161], ceramics [21, 162, 163], composites [101] and
metals [10, 75, 124, 202]. The separate group that exhibits the non-associated flow are
geomaterials, i.e. rocks [110, 114, 212], granular materials [44, 199, 203, 213], clays
[89, 107, 214] and reinforced soils [126]. Correct modelling of materials with intrinsic
instabilities is important from the engineering point of view and approach that includes
it should be preferred. However, this class of mathematical theories has its challenges,
such as ill-posedness of the initial and boundary value problems in non-associative
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plasticity [30, 211], strain localization [13], return mapping algorithm for non-associated
plasticity [22], stress-strain integration problem [31, 146] or the use of non-associated
models with quadratic or non-quadratic yield criteria [28, 58, 172, 173, 202]. It should
be mentioned that the problems listed above do not concern only constitutive relations
with the non-associated flow rule.

Non-locality is a concept observed in heterogeneous materials that pose a challenge
when it comes to reliable material modelling. The early ideas for non-local formulations
were developed in the 1960s and since then were studied by various authors [3, 12, 29,
35, 48, 54, 123, 127, 206]. Most of these theories establish a parameter that refers to the
intrinsic structure of the material by introducing characteristic length or time. It can
be obtained experimentally or estimated based on micromechanics [26, 59, 87, 99, 106,
219]. The issue of non-locality was studied in a different formulation, such as non-local
theories [49, 178], strain-gradient theories [128, 206], micropolar theories [47, 137], or
the theories of material surfaces [71].

The phenomena of anisotropic non-locality in various materials were closely stud-
ied. In [182] a general model for predicting crack nucleation and growth was proposed.
Strain gradients were used in [97] to account for non-local structure in quasi-brittle ma-
terials. A rate-dependent non-local damage model was proposed and validated against
experimental results obtained with the Split Hopkinson Bar by Pereira et al. [147].
In [20] a dynamic study of local and non-local formulations in brittle solids was con-
ducted. A non-local theory was used as a regularization technique in [15] as a method
for obtaining a mesh-independent solution. A comprehensive overview of the process
of quasi-static fracture in plain and reinforced concrete with constitutive models that
applied non-local or second-gradient theory was given in [204].

Germain et al. [60], through writing constitutive equations in a non-local frame-
work, achieved implicit gradient formulation to model laminated structures. In [4] mod-
elling of vascular tissues was studied by applying a fully three-dimensional anisotropic
model of hyperelastic behaviour. Abu Al-Rub and Voyiadjis [1] presented a non-local
gradient-enhanced fully coupled plastic-damage constitutive model of concrete. The
rate-sensitive inelastic model with an embedded implicit length-scale parameter was
profusely discussed in [155] and used in numerical analyses [66, 194].

The non-local and anisotropic properties of the material may impact the localization
of strain. In the next section, the nucleation and the development of the narrow zones
of shearing, so-called shear bands, are discussed.

1.2.3. Shear bands

The overview presented here covers a small portion of selected works that are rel-
evant to the subject of this treatise. The first observation of adiabatic shear bands
can be attributed to Tresca in [207], where he observed the thermal line, or heat
cross, that occurred in the forging process. It was noted by the author that material
strength, low thermal conductivity and low heat capacity are contributing factors to
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this phenomenon. Observations of the metals forging process yielded many papers
which were listed in [91]. However, early observations of shear bands are attributed
to Zener and Hollomon [221], who were first to postulate that shear bands are the
result of a local material instability powered by thermal softening. The temperature
increase is caused by inelastic work and is a signature of change in the deformation
conditions from isothermal to adiabatic. The localization of adiabatic shear bands
was observed experimentally in various applications such as metal forging and milling,
high-velocity punching and ballistic impact. Useful reviews of the subject were given
by Rogers [166, 167, 168], Rogers and Shastry [169], Dormeval [37] and Zurek and
Meyers [225]. Experimental measurements of the strain, strain rate and temperature
at the onset of bands formation were studied by Moss [132], Olson et al. [141], Hartley
et al. [72] and Marchand and Duffy [119]. The major effort of blending experimental
results with mechanics was made by Erlich, Seaman and Shockey [50] by postulating
nucleation and growth mechanism for shear bands. The localization of plastic shearing
in the single crystal was studied by Chang and Asaro [19].

An in-depth study of the shear bands localization leads to the rise of two major
mechanisms that are used to study this problem. First is associated with quasi-static,
isothermal deformations in materials that do not exhibit rate-sensitivity, therefore is
out of the scope of this dissertation and will only be mentioned here. An interested
reader is referred to references [5, 24, 25, 76, 84, 85, 145, 164, 170, 205].

The second mechanism regards the adiabatic deformation in rate-sensitive mate-
rials. In [217] authors assumed material characterized by strain hardening, thermal
softening, strain-rate hardening and were able to show that thickness of the shear band
depends on the rate-dependent component in the governing equations. Deformation
of a large block of material, with small regions of embedded imperfections, subjected
to a constant average strain rate was studied by Wu et al. [218]. It was found that
the shear bands initiate in the region of the material defect. Pan et al. [144] conducted
a study on the effect of the strain-rate sensitivity on the localization of deformation in
viscoplastic solids. Two loading conditions, plane strain tension and axisymmetric ten-
sion were considered in the numerical inquiries that showed the relation between the
material rate-sensitivity and the void nucleation and growth. LeMonds and Needle-
man [102] built upon the numerical framework given in [144] by adding a thermal
dependency, thus obtaining a model that accounted for strain hardening, strain-rate
sensitivity, thermal softening and heat conduction.

The assumption of adiabatic deformation results in the increase of heat generation
in the regions of high strain rates. Clifton et al. [23] postulated that non-uniform defor-
mation is expected since strain rates tend to increase in the hotter regions and decrease
in colder. Critical instabilities were also examined by Culver [27] and Staker [180]; both
authors suggested that critical instability strain is determined by the point in stress-
strain relation where the curve vanishes. In [108], Litoński considered a temperature-
dependent and strain-rate sensitive empirical material model. By subjecting geomet-
rically inhomogeneous tubes to torsion, he was able to confirm, what was previously
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suggested by others, that initiation of instability corresponds to the peak value in the
torque-twist relation. In [130] and [131] authors were able to find critical conditions,
in closed form, for shear localization in thermo-viscoplastic material for models that
neglect the heat conductivity, inertia and elasticity. Shawki and Clifton [175] investi-
gated a one-dimensional model for simple shearing deformation of thermal viscoplastic
material with a particular focus on shear strain localization under high strain rates.
The authors concluded that thermal softening plays a key role in reducing the material
stiffness which promotes the localization. Conversely, at small strains, strain hardening
often dominates thermal softening and the net interaction between results in the lack
of localization. Large plastic strains are required so that the thermal softening over-
whelms strain hardening and localization can take place. The dynamics of shear band
formation was studied in [215], making use of simplified thermo-viscoplastic flow law.
Grady [69] presented a study of adiabatic shear bands, utilizing thermoviscous plastic-
ity and heat transfer laws, in the two-material two-temperature body. In this paper,
the author had investigated the shear band dissipation rate and shear band tough-
ness, which was calculated for the number of metals. Meyer et al. [125] investigated
changes in microstructure adjacent to previously generated shear bands. They provided
evidence that plastic deformation, coupled with temperature rise, leads from a dislo-
cated/twinned/transformed structure to the breakup into small regions separated by
geometrically-necessary boundaries. The subject of adiabatic shear localization was
also extensively discussed in textbooks devoted to this problem, e.g. [216] and [36].

Several of the previously mentioned studies have attempted to use the viscous
models to reproduce the rate-dependent inelastic deformation. In the following section,
the topic of the viscoplastic model and its limitations are discussed.

1.2.4. Viscoplasticity

In 1963 Perzyna published a paper [148] where he outlined th e fundamental formu-
lation of the classical (rate-dependent) viscoplasticity. The idea and different aspects
of this theory also referred to in the literature as the theory of thermo-viscoplasticity
(TTV) [195], were discussed in many works since its inception. The conditions for
the existence and uniqueness of the softening problem were studied in [154], while
well-posedness of the problem was discussed in [62, 226, 227]. The propagation of
mechanical and thermal waves in the viscoplastic medium was examined in [61, 63].
The material parameter that denotes relaxation time for mechanical disturbances was
analyzed in [64, 65], additionally, the dispersive character of the model was discussed
in [64] and energy dissipation in [65]. The identification of material parameters at
elevated temperatures was examined in [93].

The basic model was extended with the damage mechanism was introduced in
[67, 155] and developed in [184]. The fracture propagation in processes where high
impact velocities were regraded was examined in [41, 43]. The study of the thermo-
viscoplastic flow processes under cyclic dynamic loading was conducted in [39, 40].

1.2. STATE OF THE ART 7

In [67] the topic of the smooth and non-smooth distributions within damage and failure
was raised. The description of the role of covariance, i.e. the invariance with respect
to any diffeomorphism, was discussed in [109, 185]. Finally, the numerical scheme for
viscoplasticity was presented by Simo and Hughes [177], as well as by de Souza Neto
et al. [33].

The problems of non-local and anisotropic material properties can be a severe lim-
itation in modelling dynamic behaviour. Therefore, the formulation of the viscoplas-
ticity enhanced with the fractional operator is discussed in the next section.

1.2.5. Fractional calculus

Useful reviews of the mathematical foundations of fractional calculus and methods for
solving fractional differential equations have been given in [45, 68, 140, 160].

Several papers presenting various applications of the fractional operator through-
out various scientific fields indicate the potential of this approach to solve problems
or generalize existing solutions. Among the areas where fractional calculus was used
physics [52, 74], control theory [183, 220], electrical engineering [53], bioengineer-
ing [51, 112, 113], finance theory [116, 174], signal processing [7, 122], should be
mentioned. A wide variety of mathematical tools and methods, which builds the core
of continuum mechanics, present a great opportunity for using fractional calculus to
generalize classical field theories. Examples of fractional operators applications in me-
chanics can be found in [14, 16, 17, 98, 103, 104, 105, 120, 187, 188, 189]. Generalization
of continuum models that describe the rate-dependent behavior of solids is a subject
of interest in this treatise. Thus, in the two subsequent paragraphs works concerning
non-integer order viscoelastic and viscoplastic formulations are discussed.

Fractional calculus was used to write constitutive relations that were found to be
equivalent to molecular theories of viscoelasticity [9]. The same group of researchers
in [8] applied the fractional operator to stress-strain relation in viscoelastic dampers.
It was found that the new model required a few parameters to predict the material
response. Creep and relaxation function were generalized, in the framework of non-
integer order calculus, which led to the reduction of creep and relaxation data [94].
Comprehensive outlook on fractional calculus, linear viscoelasticity, wave motion and
how these can be used in conjunction was given in [115].

The study of the fractional viscoplasticity was first carried out by Sumelka in [186].
It was found that in the new formulation of Perzyna theory, the non-associated flow
was obtained without any additional potential assumption. In the subsequent paper,
Sumelka and Nowak [190] demonstrated that the fractional operator introduces non-
locality in the stress space, although this study was based on the rate-independent
model. Numerical investigation revealed that new formulation allows the volume
change in the inelastic range, induces plastic anisotropy and non-normality of plastic
flow. The problem of non-locality was extensively presented in [195]. In [200] authors
investigated the Perzyna-type viscoplastic model in the framework of non-integer order
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calculus. It was shown that the new model exhibits features such as rate-dependence,
plastic anisotropy, non-normality, directional viscosity, material non-locality and stress-
fractional non-locality. Method for overcoming limitations of Riesz-Caputo fractional
derivative, by finding an approximate solution for any smooth and coves yield function,
was discussed in [191].

The idea of using fractional approach for modelling inealstic behaviour of geoma-
terials, as mentioned in section 1.2.2, has been already utilized by researchers. Sun
and Shen [197] demonstrated that by using non-integer order operator non-associated
flow can be achieved without additional assumption. This allows the use of already
determined material constants with only one additional parameter – fractional order.
In [198] authors proposed and studied fractional flow rule model for granular soils un-
der triaxial loading. Sun et al. [196] showed that current and critical stress states can
be used as bounds of the integral in the fractional derivative definition.

1.2.6. Summary

Viscoplasticity proved to be a reliable approach to model the rate-dependent inelastic
properties. In addition, the basic form of this theory can be fairly easily extended to in-
clude thermal and micro-mechanical phenomena that occur in metals. The applicability
of this theory has been significantly expanded through the use of fractional calculus.
Materials such as metals, rubbers, geomaterials, concrete and composites that may
require a time-dependent formulation accounting for non-normality and anisotropy are
suitable research problems for the fractional viscoplasticity.

Although some research has been carried out on fractional inviscid models, there
have been few empirical investigations into a rate-dependent description of material
behaviour. Moreover, no research has been found that surveyed the problem of the
impact of parameters, which originate both from fractional and viscoplastic formula-
tion, on material response. Finally, the dynamic behaviour of the material forges an
interesting research question, which has not been thoroughly studied in the framework
of fractional calculus, that can deliver practical relevance in the field of structural en-
gineering. The reason for this dissertation is to fill a gap in the existing literature,
hoping that the reader will benefit from it in some way.

1.3. Aims and objectives

The aim of this dissertation is to study the dynamic behaviour of the metallic materials
in the framework of the fractional viscoplastic model. A numerical parametric study
for a case of dynamic loading allows for an in-depth look into a material response.
There are two groups of parameters that can be distinguished. The first group results
from extending the basic viscoplasticity in the framework of fractional calculus – these
are referred to as fractional parameters. The second group has its origin in the original
formulation given by Perzyna, but should be studied afresh for the new model. Basic
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intuition about the dynamic behaviour can be gathered from analyses conducted at the
material point. However, to investigate the aspects of non-locality and non-normality
of viscoplastic flow in the fractional framework a full 3-D model has to be examined.
It is a subject of another set of numerical simulations conducted for the viscoplastic
model extended with additional phenomena, such as adiabatic temperature generation,
the evolution of microdamage and isotropic work-hardening/softening.

The different objectives of the treatise to model the inelastic behaviour of metallic
materials in the framework of the fractional viscoplasticity were listed below.

• Modification of numerical procedure used in previous studies [191, 200] to in-
clude thermal and mechanical effects of deformation in the fractional viscoplastic
formulation.

• Development of a finite element model of an infinitesimal material point to study
the fundamental behaviour of the fractional procedure.

• Development of a finite element model of a full 3-D specimen to study the
anisotropy and localization of deformation.

• Analysis of the relation between the material parameters of the fractional model
and the dispersion of the stress waves.

• Analysis of the impact of the parameters, which stem from both the fractional
and viscous approaches, on elementary stress-strain relation at the material point.

• Examination of the various deformation modes depending on the fractional pa-
rameters in the case of dynamic loading. Additionally, in this case, strain local-
ization and anisotropy of the inelastic deformation is anticipated.

• Analysis of the state variables and their relations, during the dynamic tensile test
until the moment of fracture.

Based on the above, a following thesis for this dissertation can be formulated:

The fractional formulation of the viscoplastic model improves the descrip-
tion of metals behaviour under dynamic loading.

The validity of this statement will be verified during the implementation of the objec-
tives of this dissertation.
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1.4. Outline

The remaining chapters of this dissertation are structured as follows:

Chapter 2: Foundations of continuum mechanics and finite element method. In this
chapter, a tensor analysis is used to describe the motion and the deformation
of a continuous matter. Next, the concept of stress in the form of Cauchy, first
Piola-Kirchoff and second Piola-Kirchoff stress tensors are formulated. Balance
principles are subsequently introduced together with fundamental laws of thermo-
dynamics. The rules that ought to be followed in creating new material models
are later discussed. In the last part of this chapter, an overview of the finite
element method and the explicit time integration scheme is given.

Chapter 3: Fractional stress-gradient viscoplasticity. This chapter begins with a terse
introduction to the fractional calculus with a particular focus on the Riesz-Caputo
derivative. This concept is then applied to Perzyna’s theory of viscoplasticity,
resulting in a new model of fractional viscoplasticity. It is followed by a detailed
description of the numerical implementation. Finally, the behaviour of the model
is examined in a number of numerical examples that study the influence of the new
material parameters and the parameters resulting from classical viscoplasticity.
The foregoing examples are the original results that present the dynamic response
of the fractional model.

Chapter 4: Fractional Viscoplasticity with extended constitutive structure. The frac-
tional model is further developed in this chapter. The thermo-mechanical cou-
pling, isotropic work-hardening/softening and the microdamage mechanism that
governs the fracture criterion are added to the previously presented model. This
requires a new implementation scheme to be drafted to include a new constitutive
structure. Finally, the second set of original results is presented. Although, this
time the deformation of a dog-bone specimen is studied in order to capture the
full spatial performance of the new model. The parametric study is focused on
the influence of the fractional parameters on the deformation type and the state
variables. Also, the damage localization and the failure evolution in the material
are closely studied.

Chapter 5: Conclusion and Future Work. All the results of the preceding chapters
are summarised and possible directions for further research are outlined.
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Chapter 2

Foundations of continuum mechanics
and finite element method

2.1. Introduction

Continuum mechanics deals with a macroscopic description of motion and deforma-
tion regarding solid bodies, fluids and gases. A physical body, which is composed of
molecules distributed in space, can be modeled with an uncountable set of particles
that interact with each other. On a continuum body, functions describing its internal
state and interactions between particles may be applied. Functions derived from this
assumption allow replacing discontinuous medium with tensor field quantities. The ma-
terial presented in this chapter is well established in literature and notation used here
follows nomenclature presented in Truesdell and Noll [209], Holzapfel [79], Kowalczyk
and Kleiber [96] and Ostrowska-Maciejewska [143].

In this work a mathematical structures and laws of continnum mechanics are used
as foundation for new formulation of inelastic model describing the rate-dependent
deformation in metals. This chapter introduces basic concepts that will serve as a pre-
requisites for further considerations; here were divided into following parts:

• kinematics,

• concept of stress,

• laws of conservation,

• principles of material modelling,

• finite element method.
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2.2. Kinematics

A physical body B that occupies a certain position in Euclidean space E3 is, in fact,
a grouping of particles P , where P ∈ B. Motion and deformation of B are observed both
in time and space as it moves from one occupied region to another, as shown in Fig. 2.1.
Those regions are denoted by Ω0, . . . ,Ωc and are referred to as the configurations of B in
different time frames t. Typically the region Ω0 corresponds to an initial time t = 0 and
is called the reference, or the undeformed, configuration of the body B. Subsequently,
as the motion of B progresses, it will move to a different region in space, denoted by
Ωc and named a current, or deformed configuration. The position vectors X and x

serve as labels for points P in the reference and current configuration, respectively.
Component (or index) notation of these vectors is as follows:

X = XiÊi, (2.1)

and
x = xiêi, (2.2)

where Êi and êi are basis vectors and i = 1, 2, 3. In this thesis rectangular Cartesian
or simply Cartesian basis system is used, which means that basis vectors are unit and
orthogonal (orthonormal). An absolute (or direct) notation of tensors is also used later
in this text. The direct notation has the advantage that it accentuates the fact that
physical relationships are independent of the choice of the coordinate system [179].
Moreover, Eqs. 2.1 and 2.2 were written according to the summation convention used
to concisely write long equations with additive terms.

The components Xi are known as material, or referential, coordinates of point P

in Ω0 configuration, whereas xi are referred to as spatial, or current, coordinates of P
in Ωc configuration. Uppercase letters denote scalar, vector and tensor quantities that
were formulated in reference configuration and lowercase letters are used for quantities
in the current configuration. Assuming one and universal frame of reference, used
regardless of the present configuration of the body B, both sets of basis vectors, Êi

and êi, become equal.
Mapping of a particle P into point X ∈ Ω0 (t = 0) is achieved by one-to-one

function ζ0, such as
X = ζ0(P, t). (2.3)

Similarly, for t > 0 a map
x = ζ(P, t), (2.4)

that acts on B to create configuration Ωc can be defined.
The motion of B manifests itself in the changes of the configurations Ω of the body

and position vectors x associated with particles P . For this a vector function φ has to
be determined in the following form

x = φ(X, t) = ζ
[
ζ−1
0 (X, t)

]
. (2.5)
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Figure 2.1. Motion of body B between two configurations

Continuous motion φ follows particle P as it successively changes positions thus creat-
ing a curve in E3 known as pathline or trajectory. Motion is categorized as invertible
transformation, which is expressed in a statement

X = φ−1(x, t), (2.6)

with φ−1 denoting an inversed mapping of points located in a current configuration Ωc

into reference configuration Ω0.
Material description of motion is formulated with respect to the material coordi-

nates and also known as Langrangian description. Similarly, the name spatial descrip-
tion is used to describe motion in terms of spatial coordinates or historically as Eulerian
description.

Displacement of particle P between reference and the current configuration is given
by the formula

U(X, t) = x(X, t)−X (2.7)
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and êi, become equal.
Mapping of a particle P into point X ∈ Ω0 (t = 0) is achieved by one-to-one

function ζ0, such as
X = ζ0(P, t). (2.3)

Similarly, for t > 0 a map
x = ζ(P, t), (2.4)

that acts on B to create configuration Ωc can be defined.
The motion of B manifests itself in the changes of the configurations Ω of the body

and position vectors x associated with particles P . For this a vector function φ has to
be determined in the following form

x = φ(X, t) = ζ
[
ζ−1
0 (X, t)

]
. (2.5)

2.2. KINEMATICS 15

Figure 2.1. Motion of body B between two configurations

Continuous motion φ follows particle P as it successively changes positions thus creat-
ing a curve in E3 known as pathline or trajectory. Motion is categorized as invertible
transformation, which is expressed in a statement

X = φ−1(x, t), (2.6)

with φ−1 denoting an inversed mapping of points located in a current configuration Ωc

into reference configuration Ω0.
Material description of motion is formulated with respect to the material coordi-

nates and also known as Langrangian description. Similarly, the name spatial descrip-
tion is used to describe motion in terms of spatial coordinates or historically as Eulerian
description.

Displacement of particle P between reference and the current configuration is given
by the formula

U(X, t) = x(X, t)−X (2.7)



16 CHAPTER 2. FOUNDATIONS OF CONTINUUM MECHANICS AND...

evaluated in terms of Lagrangian description. Similarly, the displacement field can be
express in terms of Eulerian description, that is

u(x, t) = x−X(x, t). (2.8)

Equation (2.7) evaluates the displacement of a particle at time t in association with its
referential position X. Field u(x, t), postulated in Eq. (2.8), proves that displacement
can be expressed in terms of the current position, making both notations equivalent

u(x, t) = U [φ−1(x, t), t] = U(X, t). (2.9)

One of the crucial quantities in the field of the nonlinear continuum mechanics is
a deformation gradient

F (X, t) =
∂φ(X, t)

∂X
, (2.10)

also expressed in a following manner

F (X, t) = Grad[x(X, t)] = ∇φ(X, t), (2.11)

where ∇(·) is a gradient operator. F is a second-order tensor that in general has nine
components given by

FaA =
∂φa

∂XA
. (2.12)

Treating F as a linear operator acting on an infinitesimal line element in reference
configuration dX, we obtain

dx = F (X, t) dX, (2.13)

where dx denotes an infinitesimal line element in the current (deformed) configuration.
The deformation gradient binds undeformed and deformed configurations, but a con-
dition of nonsingularity has to be also fulfilled so it could act as a one-to-one map.
This can be assured by the existence of an inverse operator

F−1(x, t) = grad[X(x, t)] =
∂φ−1(x, t)

∂x
, (2.14)

denoted as inverse deformation gradient. Notation Grad[.] and grad[.] indicates that
the gradient operator is defined with respect to reference or current configuration. It
has the ability to carry spatial line element dx to the material line element dX via the
following relationship

dX = F−1(x, t) dx. (2.15)

For the existence of F−1, the following condition has to be met, namely

J(X, t) = det[F (X, t)] �= 0, (2.16)

where J is known as the volume ratio or the Jacobian determinant. It is the measure
of a volume change produced by a deformation

dv = J(X, t) dV, (2.17)
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where dV and dv are infinitesimal volume elements in the reference and current con-
figurations, respectively. The volume of deformed element (dv), must be positive.
Therefore, physically admissible deformation must satisfy

J(X, t) > 0. (2.18)

The assumption that body B does not move (F = 1 and x = X) results in J = 1.
However, for a body in motion, condition J = 1 may be true as well. In such case, the
deformation has an isochoric or volume-preserving character.

Similarly, a relation between the infinitesimal area element in undeformed (dA)
and deformed (da) configurations follows Nanson’s formula

da = cof[F ] dA, (2.19)

with the cofactor cof[F ] = det[F ]F−T and vector elements defined as da = n da and
dA = N dA. N and n are normal vectors perpendicular to the surface elements dA

(reference configuration) and da (actual configuration), respectively.
The polar decomposition requires for it subject to be an invertible (nonsingular)

tensor and is as follows
F = RU = VR, (2.20)

where R is a rotation tensor, U and V are right and left stretch tensors, respectively.
The operation of squaring infinitesimal line elements dx and dX allows formulating

two important deformation tensors

C = F TF , (2.21)

and
c = FF T , (2.22)

named right and left Cauchy-Green tensors. By stating the symmetry of stretch tensor
(U = UT ) and orthogonality of rotation tensor (R−1 = RT ) the following holds true:

C = F TF = UTRTRU = UTU, (2.23)

and
c = FF T = VRRTVT = VVT . (2.24)

The definition of a strain tensor can be achieved by subsequent use of dx and dX,
more precisely by considering the difference of its squares

E =
1

2

(
F TF − 1

)
, (2.25)

and
e =

1

2

(
1 − F−TF T

)
, (2.26)
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That leads to two new formulations that are denoted in the literature as Green and
Almansi strain tensors. Components of the strain tensors can be expressed in terms of
the displacement field

E =
1

2

(
GradT [U ] + Grad[U ]

)
+

1

2
GradT [U ]Grad[U ], (2.27)

e =
1

2

(
gradT [u] + grad[u]

)
+

1

2
gradT [u] grad[u], (2.28)

in material and spatial description, respectively. In index notation

EAB =
1

2

(
∂UB

∂XA
+

∂UA

∂XB

)
+

1

2

∂UC

∂XA

∂UC

∂XB
, (2.29)

eab =
1

2

(
∂ub

∂xa
+

∂ua

∂xb

)
+

1

2

∂uc

∂xa

∂uc

∂xb
. (2.30)

The nonlinear terms in Eqs. (2.27) and (2.28) can be neglected when displacement
gradients are infinitesimally small, i.e. |Grad[U ]| � 1 (or |grad[u]| � 1). Material and
spatial descriptions are indistinguishable for infinitesimals strains and therefore Green
and Almansi tensor become equal. The infinitesimal strain tensor is therefore given by

εεε =
1

2

(
gradT [u] + grad[u]

)
= E = e, (2.31)

or in index notation as

εab =
1

2

(
∂ub

∂xa
+

∂ua

∂xb

)
. (2.32)

Material and spatial time derivatives define velocity in the material description (V )
and spatial description (v) as

V (X, t) =
∂φ(X, t)

∂t
= ẋ, (2.33)

and
v(x, t) = V (φ−1(x, t), t), (2.34)

where ˙(·) is a common abbreviated notation of the first derivative with respect to time.
Since the velocity depends on the position of particles, the spatial velocity gradient
can be introduced with respect to the spatial coordinates

l(x, t) =
∂v(x, t)

∂x
= grad[v(x, t)]. (2.35)

Index notation reveals the detailed composition of this tensor, namely

lij =
∂vi
∂xj

. (2.36)

2.3. THE CONCEPT OF STRESS 19

The velocity gradient can be decomposed into symmetric and skew-symmetric parts,
as

l(x, t) = d(x, t) +w(x, t), (2.37)

where
d =

1

2
(l+ lT ) =

1

2

(
grad[v]− gradT [v]

)
= dT , (2.38)

and
w =

1

2
(l− lT ) =

1

2

(
grad[v] + gradT [v]

)
= −wT . (2.39)

In the above, d is the rate of deformation tensor (or rate of stretching tensor) and w

denotes the spin tensor (or rate of rotation). The time derivative of the deformation
gradient can be expressed as

Ḟ (X, t) =
∂

∂t

(
∂φ(X, t)

∂X

)
=

∂

∂X

(
∂φ(X, t)

∂t

)
=

∂V (X, t)

∂X
= Grad[V (X, t)],

(2.40)
where Grad[V (X, t)] is a material velocity gradient and is equal to Ḟ = DF /Dt.
The spatial velocity gradient relates to the material velocity gradient in the following
manner

l(x, t) =
∂v(x, t)

∂x
=

∂φ̇(X, t)

∂X

∂X

∂x
= Ḟ F−1. (2.41)

The derivative of Jacobian determinant with respect to time yields

J̇ =
∂det[F ]

∂F
:
∂F

∂t
= JF−T : Ḟ = J tr[l] = J div[v]. (2.42)

2.3. The concept of stress

Motion and deformation of the body increase the intensity with which neighbouring
particles are acting on each other. A postulate can be raised that it will create an
internal interaction pressure between particles P ∈ B. Cross-section of B exposes
an internal surface where an infinitesimal spatial surface da with a normal vector n

at a point x can be chosen – Fig. 2.2. Those quantities are evaluated for current
configuration but can be mapped to reference and denoted as dA, N , X. The Cauchy
(true) traction vector, denoted as t̃ acts upon da and is given by

df = t̃ da = T̃ dA, (2.43)

t̃ = t̃(x,n), T̃ = T̃ (X,N), (2.44)

where df is a density of forces acting on an infinitesimal surface. The unit of t̃ is
a force per unit surface. T̃ defines the first Piola-Kirchhoff vector, which has the same
direction as t̃ but is defined in terms of undeformed configuration. Vectors t̃ and T̃ are
also referred to as surface tractions, contact forces, stress vectors or loads.
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Figure 2.2. Traction vectors exerted on infinitesimal surface elements. The dotted line
illustrates the place of cut by the plane surface

Cauchy’s stress theorem states that there exist the second-order tensor fields σ(x, t)
and P PK(x, t) independent of n (or N), that

t̃(x,n) = σ(x, t)n, (2.45)

T̃ (X,N) = P PK(X, t)N , (2.46)

where:

σ is the Cauchy stress tensor, and
P PK is the first Piola-Kirchhoff stress tensor.

According to the principle of the conservation of angular momentum, σ is a symmetric
tensor, whereas P PK does not exhibit symmetry. Lack of symmetry stems from the
fact that the normal vector (N) is attached to the reference configuration and the
resulting stress vector refers to the current configuration. To overcome this a pullback
mapping can be utilized so that

SPK = F−1P PK , (2.47)

where SPK is a symmetric second Piola-Kirchhoff stress tensor.

2.4. CONSERVATION OF MASS, MOMENTA AND ENERGY 21

One of the alternative stress measure useful in formal modelling is Kirchhoff stress
tensor τ and is defined via

τ = Jσ. (2.48)

Kirchhoff stress tensor can be also obtained as a result of a pushforward of the second
Piola-Kirchhoff tensor to the current configuration

τ = FSPKF T . (2.49)

2.4. Conservation of mass, momenta and energy

Models of physical phenomena are based on fundamental laws of physics that govern
and restrict the behaviour of a mechanical system. They can not be derived from other
relations and have to be satisfied at all times. The constitutive relation (stress-strain
equations) and both initial and boundary conditions also have to be included to obtain
stress, deformation or displacement fields.

2.4.1. Conservation of mass

Mass of body B is a fundamental property of every continuum body. Law of conserva-
tion states that for body B, enclosed by the boundary surface ∂B, no mass can enter
or leave the boundary during the deformation process. Global formulation of the mass
conservation is therefore given via

mB =

∫

Ω0

ρ0(X) dV =

∫

Ωc

ρ(x, t) dv = const. (2.50)

where ρ0 and ρ denote referential and current density, respectively. Using Eq. (2.17)
a local form (local formulation) of the mass conservation principle is obtained

J(X, t) =
ρ0(X)

ρ(x, t)
=

ρ0(X)

ρ(φ(X, t), t)
, (2.51)

valid for material (or Lagrangian) description, which is an appropriate description for
solid mechanics. For the sake of clarity, explicit notation of arguments is abandoned
till the end of this section. The condition that mass of the body remains constant
(2.50) implies that time derivative of mass must be zero, i.e.

ṁB =
D

Dt

∫

Ωc

ρ dv =
D

Dt

∫

Ω0

ρ J dV =

∫

Ω0

(
ρ̇J + ρJ̇

)
dV = 0, (2.52)

where ρ̇ denotes time derivative of density. Combining Eq. (2.52) with the time
derivative of Jacobian determinant (2.42) leads to alternative local form of the mass
conservation

ρ̇+ ρ div(v) = 0, (2.53)

where v is the spatial velocity field v(x, t).



20 CHAPTER 2. FOUNDATIONS OF CONTINUUM MECHANICS AND...

Figure 2.2. Traction vectors exerted on infinitesimal surface elements. The dotted line
illustrates the place of cut by the plane surface
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stress, deformation or displacement fields.

2.4.1. Conservation of mass
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tion states that for body B, enclosed by the boundary surface ∂B, no mass can enter
or leave the boundary during the deformation process. Global formulation of the mass
conservation is therefore given via

mB =

∫

Ω0

ρ0(X) dV =

∫

Ωc

ρ(x, t) dv = const. (2.50)

where ρ0 and ρ denote referential and current density, respectively. Using Eq. (2.17)
a local form (local formulation) of the mass conservation principle is obtained

J(X, t) =
ρ0(X)

ρ(x, t)
=

ρ0(X)

ρ(φ(X, t), t)
, (2.51)

valid for material (or Lagrangian) description, which is an appropriate description for
solid mechanics. For the sake of clarity, explicit notation of arguments is abandoned
till the end of this section. The condition that mass of the body remains constant
(2.50) implies that time derivative of mass must be zero, i.e.

ṁB =
D

Dt

∫

Ωc

ρ dv =
D

Dt

∫

Ω0

ρ J dV =

∫

Ω0

(
ρ̇J + ρJ̇

)
dV = 0, (2.52)

where ρ̇ denotes time derivative of density. Combining Eq. (2.52) with the time
derivative of Jacobian determinant (2.42) leads to alternative local form of the mass
conservation

ρ̇+ ρ div(v) = 0, (2.53)

where v is the spatial velocity field v(x, t).
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2.4.2. Conservation of linear momentum

Momentum is a measure of the tendency of a body to keep moving one it was set in
motion. The rate of change of momentum is equal to all external forces – this is called
the principle of linear momentum and can be formulated similarly to Newton’s second
law

ṗ =
dp

dt
= mB

dv

dt
= mB a = F. (2.54)

This fundamental law can be generalized in terms of the mechanics of a continuum in
the following form

L̇(t) =
D

Dt

∫

Ωc

ρ(x, t)v(x, t) dv =
D

Dt

∫

Ω0

ρ0(X, t)V (X, t) dV = F(t), (2.55)

where V (X, t) and v(x, t) denote the material and spatial velocity fields. The resultant
force F(t) is comprised of the surface traction t̃ acting over surface ∂B and body forces
b̃ that act on the volume element. Hence, the resultant force is given in the additive
form

F(t) =

∫

∂Ωc

t̃(x, t) da +

∫

Ωc

b̃(x, t) dv. (2.56)

The balance of the linear momentum combines the external force (2.56) and the
principal (2.55) into one statement

D

Dt

∫

Ωc

ρ(x, t)v(x, t) dv =

∫

∂Ωc

t̃(x, t) da +

∫

Ωc

b̃(x, t) dv. (2.57)

For the sake of clarity in the subsequent equations the arguments of tensors, both first
and second-order, are omitted. Utilizing the Cauchy stress theorem and divergence
theorem ∫∫

∂Ωc

σn da =

∫

∂Ωc

div(σ) dv (2.58)

the Cauchy’s first equation of motion can be postulated as
∫

Ωc

(
div(σ) + b̃− ρv̇

)
dv = 0, (2.59)

where v̇ = D
Dtv(x, t). This relation should be met for any volume dv, hence it can be

written in the following local form

div(σ) + b̃ = ρv̇. (2.60)
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2.4.3. Conservation of angular momentum

Principle of the balance of angular momentum states that rate of change of the total
angular momentum is equal to the resultant moment of the forces acting on particles
in body B. Angular momentum defines the moment of the linear momentum relative
to a fixed point in space, expressed as

J(t) =

∫

Ωc

r ×
[
ρ(x, t)v(x, t)

]
dv =

∫

Ω0

r ×
[
ρ0(X)V (X, t)

]
dV, (2.61)

where r is a position vector. The time derivative of J defines the balance of the angular
momentum as

J̇(t) =
D

Dt

∫

Ωc

r ×
[
ρv

]
dv =

D

Dt

∫

Ω0

r ×
[
ρ0 V

]
dV = M(t), (2.62)

where M(t) is the resultant moment. Again, to improve the readability the arguments
for the tensor objects were omitted. The additive form of M(t) resembles Eq. (2.56)
apart from the cross product of the action (b̃, t̃) and the relative position of the particle
(r), i.e.

M(t) =

∫

∂Ωc

r × t̃ da +

∫

Ωc

r × b̃ dv. (2.63)

Finally, the global form of the balance of the angular momentum in the spatial
description is obtained as

D

Dt

∫

Ωc

r ×
[
ρv

]
dv =

∫

∂Ωc

r × t̃ da +

∫

Ωc

r × b̃ dv. (2.64)

The most curcial result, that stem from the balance of angular momentum, is the
symmetry of the Cauchy stress tensor, i.e.

σT = σ or σab = σba. (2.65)

2.4.4. Conservation of mechanical energy

The law of the conservation of mechanical energy is not a separate low; it is a refor-
mulation of the equation of motion, which follows the principle of linear momentum.

First, the external mechanical power or the rate of external mechanical work Pext

is given by

Pext(t) =

∫

∂Ωc

t̃ · v da +

∫

Ωc

b̃ · v dv, (2.66)

where the distinction between volume v and spatial velocity field v should be em-
phasized. Kinetic energy K derives from the classical definition of Newtonian kinetic
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ṗ =
dp

dt
= mB

dv

dt
= mB a = F. (2.54)

This fundamental law can be generalized in terms of the mechanics of a continuum in
the following form

L̇(t) =
D

Dt

∫

Ωc

ρ(x, t)v(x, t) dv =
D

Dt

∫

Ω0

ρ0(X, t)V (X, t) dV = F(t), (2.55)

where V (X, t) and v(x, t) denote the material and spatial velocity fields. The resultant
force F(t) is comprised of the surface traction t̃ acting over surface ∂B and body forces
b̃ that act on the volume element. Hence, the resultant force is given in the additive
form

F(t) =

∫

∂Ωc

t̃(x, t) da +

∫

Ωc

b̃(x, t) dv. (2.56)

The balance of the linear momentum combines the external force (2.56) and the
principal (2.55) into one statement

D

Dt

∫

Ωc

ρ(x, t)v(x, t) dv =

∫

∂Ωc

t̃(x, t) da +

∫

Ωc

b̃(x, t) dv. (2.57)

For the sake of clarity in the subsequent equations the arguments of tensors, both first
and second-order, are omitted. Utilizing the Cauchy stress theorem and divergence
theorem ∫∫

∂Ωc

σn da =

∫

∂Ωc

div(σ) dv (2.58)

the Cauchy’s first equation of motion can be postulated as
∫

Ωc

(
div(σ) + b̃− ρv̇

)
dv = 0, (2.59)

where v̇ = D
Dtv(x, t). This relation should be met for any volume dv, hence it can be

written in the following local form

div(σ) + b̃ = ρv̇. (2.60)

2.4. CONSERVATION OF MASS, MOMENTA AND ENERGY 23

2.4.3. Conservation of angular momentum

Principle of the balance of angular momentum states that rate of change of the total
angular momentum is equal to the resultant moment of the forces acting on particles
in body B. Angular momentum defines the moment of the linear momentum relative
to a fixed point in space, expressed as

J(t) =

∫

Ωc

r ×
[
ρ(x, t)v(x, t)

]
dv =

∫

Ω0

r ×
[
ρ0(X)V (X, t)

]
dV, (2.61)

where r is a position vector. The time derivative of J defines the balance of the angular
momentum as

J̇(t) =
D

Dt

∫

Ωc

r ×
[
ρv

]
dv =

D

Dt

∫

Ω0

r ×
[
ρ0 V

]
dV = M(t), (2.62)

where M(t) is the resultant moment. Again, to improve the readability the arguments
for the tensor objects were omitted. The additive form of M(t) resembles Eq. (2.56)
apart from the cross product of the action (b̃, t̃) and the relative position of the particle
(r), i.e.

M(t) =

∫

∂Ωc

r × t̃ da +

∫

Ωc

r × b̃ dv. (2.63)

Finally, the global form of the balance of the angular momentum in the spatial
description is obtained as

D

Dt

∫

Ωc

r ×
[
ρv

]
dv =

∫

∂Ωc

r × t̃ da +

∫

Ωc

r × b̃ dv. (2.64)

The most curcial result, that stem from the balance of angular momentum, is the
symmetry of the Cauchy stress tensor, i.e.

σT = σ or σab = σba. (2.65)

2.4.4. Conservation of mechanical energy

The law of the conservation of mechanical energy is not a separate low; it is a refor-
mulation of the equation of motion, which follows the principle of linear momentum.

First, the external mechanical power or the rate of external mechanical work Pext

is given by

Pext(t) =

∫

∂Ωc

t̃ · v da +

∫

Ωc

b̃ · v dv, (2.66)

where the distinction between volume v and spatial velocity field v should be em-
phasized. Kinetic energy K derives from the classical definition of Newtonian kinetic



24 CHAPTER 2. FOUNDATIONS OF CONTINUUM MECHANICS AND...

energy, via

K(t) =

∫

Ωc

1

2
ρv2dv =

∫

Ωc

ρv · v dv. (2.67)

External forces acting on the body may also yield internal forces that act on internal
deformations, thus carrying out work. Therefore, the rate of internal mechanical work
or simply stress power and is defined by the scalar

Pint(t) =

∫

Ωc

σ : d dv. (2.68)

Taken together, these quantities formulate law stating that power exerted by external
forces changes the kinetic energy of the material and the reminder alter its internal
energy. Thus, the balance of mechanical energy can be written in the form of

D

Dt
K(t) + Pint(t) = Pext(t) (2.69)

or
D

Dt

∫

Ωc

1

2
ρv2dv +

∫

Ωc

σ : d dv =

∫

∂Ωc

t̃ · v da +

∫

Ωc

b̃ · v dv. (2.70)

Next, the thermodynamic state variable ec = ec(x, t), defined in the current con-
figuration, can be introduced. It is used to encompass various forms of energy in the
inner volume element. So, the internal energy of body B can by specified as

E(t) =
∫

Ωc

ec dv. (2.71)

The assumption of purely mechanical deformation leads to the conclusion that the rate
of work done by internal stresses (Pint) is equal to the rate of internal energy, i.e.

Pint(t) =
D

Dt
E(t). (2.72)

Finally, the balance of mechanical energy can be expressed in terms of the internal
energy

D

Dt
K(t) +

D

Dt
E(t) = Pext(t), (2.73)

or, in the explicit notation

D

Dt

∫

Ωc

(1
2
ρv2 + ec

)
dv =

∫

∂Ωc

t̃ · v da +

∫

Ωc

b̃ · v dv. (2.74)
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2.4.5. First law of thermodynamics

A thermodynamic process is a process that considers thermal and mechanical forms of
energy in its course. The first law of thermodynamics can be regarded as a statement
of the interconvertibility of heat and work. The thermal power also referred to as the
rate of thermal work is given by

Q(t) =

∫

∂Ωc

qn da +

∫

Ωc

r dv, (2.75)

where qn denotes the scalar heat flux function and r denotes the internal heat sources.
Both quantities determine heat per unit time and are calculated in terms of unit area
and unit volume, respectively. The scalar function qn is defined by the Stokes’ heat
flux theorem

qn(x, t,n) = −q(x, t) · n, (2.76)

where q = q(x, t) is a so-called Cauchy heat flux.
Thermal power is necessary to reformulate the rate of internal energy (E) and

expand it into the thermodynamic framework. The new form is as follows

Pint(t) +Q(t) =
D

Dt
E(t). (2.77)

Consequently, the first law of thermodynamics can be written in the form of identity

D

Dt
K(t) +

D

Dt
E(t) = Pext(t) +Q(t). (2.78)

Substituting expressions for K, E , Pext and Q from Eqs. (2.67), (2.71), (2.75) and
(2.66) into the previous equation, a global form can be obtained

D

Dt

∫

Ωc

(1
2
ρv2 + ec

)
dv =

∫

∂Ωc

(
t̃ · v + qn

)
da +

∫

Ωc

(
b̃ · v + r

)
dv. (2.79)

2.4.6. Second law of thermodynamics

The second law of thermodynamics derives from the physical observation that heat is
transferred always from warmer to colder regions of material. In material modelling,
it serves as an important mathematical restriction on the constitutive equations. For
this law a concept of entropy has to be defined as a measure of disorder; physical inter-
pretation of the entropy can be achieved in terms of statistical mechanics. The total
entropy S(t) is a sum of the specific entropy ηc = ηc(x, t) in the current configuration,
i.e.

S =

∫

Ωc

ηc dv. (2.80)
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The entropy input rate Q̃(t) depends on the vector field h, denoting entropy flux
defined per unit surface area and the scalar field r̃, denoting entropy sources per unit
volume. Q̃(t) can be expressed in the following form

Q̃(t) =

∫

∂Ωc

h · n da +

∫

Ωc

r̃ dv. (2.81)

The entropy flux is assumed to be positive when it enters the body and the normal
vector is usually pointing in the outward direction, so the negative sign is used to
designate the correct direction.

The total production of entropy is defined as the difference between the rate of
change of the total entropy and the entropy input rate. The second law of thermody-
namics postulates that this quantity is never negative, i.e.

G(t) = D

Dt
S − Q̃ � 0, (2.82)

or, in the explicit notation
∫

Ωc

η̇c dv +

∫

∂Ωc

h · n da−
∫

Ωc

r̃ dv � 0. (2.83)

In classical thermodynamics, it is assumed that the entropy flux h and the entropy
sources r̃ are related to the heat flux q and heat sources r in the following manner

h =
q

θ
and r̃ =

r

θ
, (2.84)

where θ is a scalar field known as absolute temperature. Therefore, utilizing Eq. (2.84)
and the divergence theorem, the Clausius-Duhem inequality is achieved

∫

Ωc

(
η̇c + div

(q
θ

)
− r

θ

)
dv � 0. (2.85)

2.5. Axioms of material modelling

Considering body B in the reference configuration and evoking a local form of previously
stated equations, the following can be written:

balance of mass (1) ρ̇+ ρ div(v) = 0, (2.86)

first equation of motion (3) div(σ) + b̃ = ρv̇, (2.87)

geometric equations (6) e =
1

2

(
gradT [u] + grad[u]

)
+

1

2
gradT [u] grad[u].

(2.88)
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Numbers in round brackets refer to the number of equations for each formula having
regard to the symmetry of the strain tensor. Thus, the system of 10 equations has to
be used to solve for 16 unknown basic fields, namely

density (1) ρ,

displacement (3) u,

strain (6) εεε,

stress (6) σ.

Since no information was given about properties of the material from which B was
made, additional hypotheses have to be introduced to complete this system of equa-
tions. Constitutive equations bind the 6 components of stress tensor with 6 elements
of the strain tensor, thus complementing the knowledge about the response of the par-
ticular material. The process of constructing constitutive relations usually depends to
a large extent on the data from experiments that are used for fitting material parame-
ters. Firstly, the general form of constitutive relation is assumed and then limited by
referring to certain requirements and physical restrictions that were listed below:

a. Principle of material indifference. The constitutive equation must be invari-
ant under changes of frame of reference. In other words, a material response is
unequivocal and independent of the observer [209, 210].

b. Principle of thermodynamically compatible determinism. This principle
states that the history of motion of a selected point in body and temperature
field for the material is sufficient to determine the thermo-mechanical quantities
for this point [208].

c. Principle of consistency. This axiom states that any constitutive model has
to be in agreement with the conservation principles listed previously [210].

d. Principle of equipresence. This principle advises against the strong decou-
pling of variables describing different physical phenomena into separate classes.
Rather, independent variables occurring in one constitutive equation should be
present in all equations [210].

e. Principle of material symmetry. The constitutive model has to be consistent
with all symmetries that are present in the material [33].

f. Principle of local action. State variables of the given material particle depend
only on the deformation history of a small neighbourhood of that particle [209].

g. Principle of fading memory. Deformation that took place in the distant
past should have less influence on the present state of material than those that
occurred recently [209].
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g. Principle of fading memory. Deformation that took place in the distant
past should have less influence on the present state of material than those that
occurred recently [209].
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2.6. Finite element method – explicit scheme

The system of equations given in the previous section describes the general class of
thermo-mechanical problems that can be solved by finding the displacement field. An-
alytical solutions rarely (if ever) exist, so an advanced numerical procedure has to be
employed. Easy access to vast computational power encourages the use of approxi-
mate methods for obtaining an answer to initial boundary value problems (IBVP). No
attempt is here made to provide a comprehensive overview of the subject. For a de-
tailed account of the finite element method (FEM) and variational forms, a curious
reader is referred to standard textbooks ( [11, 32, 96, 223]). The version of the FEM
presented in this treatise concerns the mechanics of elastic-viscoplastic materials and
the infinitesimal strain theory.

2.6.1. Variational principle

Equations presented in section 2.4 and the boundary conditions establish a so-called
strong from, valid for every point of B. Conversely, a weak formulation enables finding
a weaker class of functions, also known as test functions, which provide approximate so-
lution of the previous system. The finite element method, which is based on variational
formulation, expands the solution range to a broad spectrum of applications. Since no
further assumptions, like existence of a potential, are made, the weak form is applicable
to general problems like inelastic materials, friction, non-conservative loading, etc [95].

In this study, infinitesimal deformations are assumed which leads to the geometric
linearization of strain tensors – cf. Eq. (2.31). Therefore, the Lagrangian and Eulerian
descriptions are approximately the same since there is very little difference between
material and spatial coordinates. Having that in mind, a lowercase notation will be
used later in the text without reference to a specific frame of reference.

An elegant way to derive weak formulation is to consider the equation of motion in
the global form (2.59) for a body B in configuration Ω. Following the index notation
and applying v̇ = ü, it can be expressed as

∫

Ω

(
σij,j + bi − ρüi

)
dv = 0, (2.89)

where (̈·) is a common abbreviated notation of the second derivative with respect to
time and the subscript comma (.),j denotes the partial derivative with respect to xj .
Next, the foregoing equation is multiplied by a test function δu (has to fulfill the
kinematic boundary conditions), which can be regarded as the virtual displacement
field and integrated over the domain Ω currently occupied by the body:

∫

Ω

δui

(
σij,j + bi − ρüi

)
dv = 0. (2.90)
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By applying the chain rule and rearranging the elements, the following is obtained

δui σij,j = (δui σij),j − δui,j σij (2.91)

which leads to a different notation of Eq. (2.90), namely
∫

Ω

(δui σij),j dv −
∫

Ω

(
δui,j σij − δui bi + δui ρüi

)
dv = 0. (2.92)

Applying the divergence theorem to the first integral and recognizing that the test
function δu vanishes on the prescribed displacement boundary gives

∫

Ω

(δui σij),j dv =

∫

∂Ω

δui σijnj da =

∫

∂Ω

δui ti da, (2.93)

yielding the following form
∫

∂Ω

δui ti da +

∫

Ω

δui bi dv −
∫

Ω

δui,j σij dv −
∫

Ω

δui ρüi dv = 0. (2.94)

Denoting the displacement gradient as δεtrij = δui,j and rearranging elements render
the virtual work principle as follows

∫

Ω

δεtrij σij dv +

∫

Ω

δui ρüi dv =

∫

Ω

δui bi dv +

∫

∂Ω

δui ti da, (2.95)

where δεtr signifies supposition that the deformation was elastic in nature.
The boundary ∂Ω can be split into two parts where the traction ∂Ωt and displace-

ments ∂Ωu are specified. By enforcing pointwise displacement boundary conditions
and imposing constraint that δui vanishes on ∂Ωu the final form can be obtained [223]

Geq =

∫

Ω

δεtrij σij dv +

∫

Ω

δui ρüi dv −
∫

Ω

δui bi dv −
∫

∂Ωt

δui ti da = 0 (2.96)

where Geq is direct Galerkin expression. The virtual work is a form of a Galerkin
method which specifies that Geq = 0.

This equilibrium can be also represented in the matrix form, which is very useful
in carrying out algebraic manipulations or designing numerical procedures. In order
to simplify mathematical notation, the second-order symmetric tensors were reduced
to six-dimensional vectors according to Voigt’s notation

σ = (σ11 σ22 σ33 σ23 σ13 σ12)
T
= (σ1 σ2 σ3 σ4 σ5 σ6)

T
. (2.97)

Thus, the [3 × 3] symmetric matrices are reduced to [6 × 1] vectors. Matrix notation
yields the following result

Geq =

∫

Ω

δ( u)T σ dv +

∫

Ω

δuT ρü dv =

∫

Ω

δuT b̃ dv +

∫

∂Ωt

δuT t̃ da, (2.98)
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where denotes three-dimensional matrix strain operator given by

=




∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

0 ∂
∂x3

∂
∂x2

∂
∂x3

0 ∂
∂x1

∂
∂x2

∂
∂x1

0




. (2.99)

2.6.2. Finite element approximation

The weak form (2.96) will be used to construct approximate solutions based on the finite
element method. This leads to the Galerkin method which was extensively discussed
in [57, 83, 224]. The finite approximation of the considered body in configuration Ω is
denoted as Ω̂ and achieved by dividing it into elements Ωe, such that

Ω ≈ Ω̂ =
∑
e

Ωe, (2.100)

where the total number of subdomains is indicated by e. The boundary of the body is
also subjected to a division

∂Ω ≈ ∂Ω̂ =
∑
e

∂Ωe =
∑
et

∂Ωte +
∑
eu

∂Ωue
, (2.101)

where ∂Ωte denotes parts of boundary on which traction was applied and ∂Ωue
denotes

segments on which displacements were applied. Now, the weak form of the motion
equation can be written as a sum over the element domain. Therefore, the discretized
version of Eq. (2.98) reads

Geq ≈ Ĝeq =
∑
e

[ ∫

Ωe

δ( u)Tσ dv +

∫

Ωe

δuT ρü dv −
∫

Ωe

δuT b̃ dv

]

−
∑
et

[ ∫

∂Ωte

δuT t̃ da

]
= 0.

(2.102)

The above can be further simplified to the following form

Geq ≈ Ĝeq =
∑
e

Ĝe +
∑
et

Ĝte , (2.103)

where Ĝe and Ĝte are specified for each element in their respective domains. For
a Galerkin method, a solution is obtained by using approximations to the dependent
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variables. Therefore, in regards to Eq. (2.102) approximations for u and the virtual
form δu have to be found.

It should be noted that the additive split in Eq. (2.102) is possible when the highest
derivatives in this equation are at least piecewise continuous [223]. These requirements
ensure that all the integrals exist and no contributions across interelement boundaries
are present. Solid mechanics problems generally contain only first derivatives, so ap-
proximation can be obtained with C0 functions, i.e. functions that are continuous but
do not necessarily have continuous first derivatives.

The time-dependent vector function for displacement approximation can be written
as follows

u(x, t) ≈ û(x, t) =
∑
n

Nn(x)ūn(t) = N(x)ū(t), (2.104)

where Nn(x) denotes the element shape functions, ūn(t) time-dependent nodal dis-
placements and sum index iterates over all n nodes associated with an element. The
approximation of the virtual displacement field acquires the following form

δu(x) ≈ δû(x) =
∑
n

Nn(x)δūn = N(x)δū(t). (2.105)

The above can be utilized to write the approximation for strains given by

εεε = u ≈
∑
n

( Nn)ūn =
∑
n

Bnūn = Bū, (2.106)

where Bn is a three-dimensional shape function derivative matrix postulated at each
node of an element and defined as

Bn =




Nn,x1 0 0

0 Nn,x2 0

0 0 Nn,x3

0 Nn,x3 Nn,x2

Nn,x3 0 Nn,x1

Nn,x2 Nn,x1 0




. (2.107)

The foregoing relations lead to weak formulation of the Eq. (2.102) postulated for
an individual element

Ĝeq
e = δūT

[ ∫

Ωe

NT ρN dv ¨̄u+

∫

Ωe

BTσ dv −
∫

Ωe

NT b̃ dv

−
∫

∂Ωte

NT t̃ da

]
.

(2.108)
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∑
e

[ ∫

Ωe

δ( u)Tσ dv +

∫

Ωe

δuT ρü dv −
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The components of the above equation can be specified as element arrays, such as

M̂e =

∫

Ωe

NT ρN dv,

P̂e =

∫

Ωe

BTσ dv,

f̂e =

∫

Ωe

NT b̃ dv +

∫

∂Ωte

NT t̃ da,

(2.109)

which subsequently allows formulating general sums over all elements

M̂ =
∑
e

M̂e, P̂ =
∑
e

P̂e and f̂ =
∑
e

f̂e. (2.110)

In the above, M̂ is called the mass matrix, P̂ is the stress divergence and f̂ denotes
the specific load matrix.

Finally, a semi-discrete (only spatial discretization was conducted) problem given
by the set of ordinary differential equations can be concisely defined in one equation,
namely

M̂ ¨̄u+ P̂ = f̂ . (2.111)

In general, integrals presented in this section can not be solved analytically and
methods for obtaining a numerical approximation are required. Arguably, the most
widely used is Gauss procedure which replaces the integral with the sum over the
domain of the integrand evaluated at specific quadrature points multiplied by weighting
factors [224].

2.6.3. Nonlinear transient problem – explicit scheme

An equilibrium given in Eq. (2.111) requires a discrete approximation in time of the
displacement field to find its value at discrete time tn+1. The aforementioned equation
be can restated in a residual form as

Ψn+1 = f̂n+1 − M̂ ¨̄un+1 − P̂n+1 = 0, (2.112)

where P̂ can be expressed only in terms of displacement, namely

P̂n+1 ≡
∫

Ωe

BTσn+1 dv = P̂(un+1). (2.113)

In principle, the solution of the transient problem can be found with any numerical in-
tegration scheme. However, for large tasks (a significant number of degrees of freedom)
it requires numerical techniques that perform calculations efficiently. The Newmark
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procedure [136] for solving the second-order ordinary differential equations is applied
here. In its essence, the Newmark approach relates the discrete displacements, veloci-
ties and accelerations at tn+1 to those at tn by the formulas

un+1 = un +∆t v(u)
n +

(
1

2
− β′

)
∆t2 a(u)

n + β′∆t2 a
(u)
n+1

= ŭn+1 + β′∆t2 a
(u)
n+1,

(2.114)

and

v
(u)
n+1 = v(u)

n + (1− γ′)∆t a(u)
n + γ′∆t a

(u)
n+1

= v̆
(u)
n+1 + γ′∆t a

(u)
n+1,

(2.115)

where ∆t = tn+1 − tn and the approximation to the solution variables are as follows

ū(tn+1) ≈ un+1, ˙̄u(tn+1) ≈ v
(u)
n+1, and ¨̄u(tn+1) ≈ a

(u)
n+1. (2.116)

The values depending only on the solution at tn are denoted as ŭn+1, v̆
(u)
n+1. The

stability and accuracy of the numerical scheme are controlled by two parameters γ′

and β′. The result for the transient problem can be now obtained for each time tn+1

by solving the set of equations (2.112) and the pair of linear equations (2.116).
By setting β′ = 0 and γ′ = 1/2, the explicit Newmark method is obtained for solving

the problem with respect to the a
(u)
n+1 variable. The reduction of equation components

makes the Newmark algorithm equivalent to the central difference method. It can be
noticed that in Eq. (2.114) only the part dependent on the current state (tn) remains,
namely

un+1 = ŭn+1. (2.117)

Subsequently, the equations set can be written as

M̂a
(u)
n+1 = f̂n+1 − P̂(ŭ). (2.118)

In the above, the explicit nature of this scheme is evident since linear equations are
solved. For a diagonal mass matrix M̂ problem becomes trivial since this matrix can
be inverted, such that

M̂
−1

=




1/M11

. . .
1/Mmm


 , (2.119)

where m denotes the number of equations in the problem. The explicit method sacri-
fices unconditional stability for the reduction of numerical effort. Each step becomes
less computationally intense, however, a significantly larger number of steps is required.
The time step limitations are given by the following condition

∆t ≤ 2

ωh
max

, (2.120)
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In the above, the explicit nature of this scheme is evident since linear equations are
solved. For a diagonal mass matrix M̂ problem becomes trivial since this matrix can
be inverted, such that

M̂
−1

=




1/M11

. . .
1/Mmm


 , (2.119)

where m denotes the number of equations in the problem. The explicit method sacri-
fices unconditional stability for the reduction of numerical effort. Each step becomes
less computationally intense, however, a significantly larger number of steps is required.
The time step limitations are given by the following condition

∆t ≤ 2

ωh
max

, (2.120)
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where ωh
max denotes the highest frequency of the system. To avoid solving the eigen-

value problem for every time step the Courant–Friedrichs–Lewy stability condition can
be adopted, such that

∆t ≤ Le,min

cd
, (2.121)

where Le,min is the smallest element dimension in the mesh and cd is the dilatational
wave speed.

This method is valid for dynamic, high-strain-rate problems where the small-time
increments and fine mesh allow to accurately capture the wave propagation in the
material and ensure the stability of the solution. It is implemented in the Abaqus
suite for finite element analysis under the name Abaqus\Explicit and was used in this
treatise.

Chapter 3

Fractional stress-gradient
thermo-viscoplasticity

3.1. Fractional calculus

In recent years fractional calculus has found use in various fields of science and en-
gineering – some applications were presented in 1.2.5. This is due to the fact that
fractional derivatives open a new dimension in the mathematical modelling, a fact
which was extensively used in continuum mechanics. The non-locality introduced by
this new approach changes the geometric and physical interpretation of the derivative
as a local property. Therefore, extending models, in which it was used and making the
original formulation a special case. The differential operator of non-integer order has
two distinctive features: (a) can be defined in many ways and, (b) each formulation is
defined on the interval or the half-axis [104]. The single point derivative is discarded
in favour of a more general approach that utilizes n-fold integration or n-fold deriva-
tive. Among different approaches, the Caputo fractional derivative has been frequently
implemented in solid mechanics because it provides easily interpretable initial condi-
tions [160]. Moreover, the Caputo derivative of the constant function is zero, which is
not a common property of all formulations [104].

As mentioned previously, the differential operator can be formulated in many differ-
ent ways. In this work, the method with the generalized fractional operator Kα

P based
on the kernel function was chosen. Following terse notation presented in [2] and [139],
the operator Kα

P can be introduced in the following form

(Kα
P f) (t) = p

t∫

a

kα(t, τ)f(τ)dτ + q

b∫

t

kα(τ, t)f(τ)dτ, (3.1)
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where t ∈
[
a, b

]
and a < t < b, p, q are real numbers, and kα(t, τ) is a kernel that

depends on the order of the derivative α. Assuming that kα(t, τ) is a difference kernel

kα(t, τ) = kα(t− τ), (3.2)

and
kα ∈ L1 ([0, b− a]) . (3.3)

Then, Kα
P is defined as bounded and linear operator, i.e. Kα

P : L1 ([a, b]) → L1 ([a, b]).
Choosing the proper kernel, i.e.

kα(t− τ) =
1

Γ(α)
(t− τ)

α−1
, (3.4)

where α > 0, leads to the following integral formulas:

• for P =
〈
a, t, b, 1, 0

〉

(Kα
P f) (t) =

1

Γ(α)

t∫

a

(t− τ)α+1f(τ)dτ = (aI
α
t f) (t), (3.5)

• and for P =
〈
a, t, b, 0, 1

〉

(Kα
P f) (t) =

1

Γ(α)

b∫

t

(τ − t)α+1f(τ)dτ = (tI
α
b f) (t), (3.6)

where (aI
α
t f) (t) and (tI

α
b f) (t) denotes the left and right Riemann-Liouville fractional

integrals, respectively and Γ(α) is the Gamma function.
Next, the general kernel differential operator of Caputo type Bα

P [117] can be de-
fined as a composition of Riemann-Liouville fractional integral and classical n-th order
(n ∈ N) derivative with respect to time

Bα
P = Kn−α

P ◦ dn

dtn
, (3.7)

where α is the order of the derivative, n = �α�+ 1 and �·� denotes the floor function.
The B-operator is valid for functions f ∈ ACn([a, b]), where ACn([a, b]) denote a space
of functions which are absolutely continuous on [a, b] interval [92]. The left-sided and
the right-sided Caputo derivatives are then defined as:

(Bα
P f) (t) =

1

Γ(n− α)

t∫

a

fn(τ)

(t− τ)α−n−1
dτ = C

aD
α
t f(t), (3.8)
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where t > a, and

− (Bα
P f) (t) = − (−1)n

Γ(n− α)

b∫

t

fn(τ)

(τ − t)α−n−1
dτ = C

tD
α
b f(t), (3.9)

where t < b.
As pointed out in [160], the complete theory of fractional differential equations

can be developed only with the use of the both left and right derivatives. In order to
obtain an operator defined on a closed interval [a, b], the Riesz symmetrized Caputo
fractional derivative is used. The Riesz-Caputo (RC) fractional derivative is a two-
sided fractional operator, defined as a linear combination of left-sided and right-sided
Caputo derivatives in the following manner [55]:

Dαf(t) = RC
aD

α
b f(t) =

1

2

[
C
aD

α
t f(t) + (−1)n C

tD
α
b f(t)

]
. (3.10)

The RC fractional derivative is utilized in the next chapters of this treatise.
Finally, it should be noted that for α of integer order n (n ∈ N), the classical

derivative of order n is obtained.
Given the integral form of the fractional operator, it has to be accepted that only

for a finite set of functions the closed-form solution of the indefinite integrals exists.
Therefore, the numerical procedure for obtaining an approximate solution has to be
introduced. The discrete approximation for Caputo derivative, based on [138, 191],
reads:

• left-sided derivative

a = t0 < t1 < · · · < tk < · · · < tma
= t,

ha =
tma−t0

ma
=

t− a

ma
, ma ≥ 2,

(3.11)

C
aD

α
t f(t)|t=tma

∼=
hn−α
a

Γ(n− α+ 2)

{[
(ma − 1)n−α+1

− (ma − n+ α− 1)mn−α
a

]
f (n)(t0) + f (n)(tma

)

+

ma−1∑
k=1

[
(ma − k + 1)n−α+1 − 2(ma − k)n−α+1

+ (ma − k − 1)n−α+1
]
f (n)(tk)

}
,

(3.12)

• right-sided derivative

t = t0 < t1 < · · · < tk < · · · < tma = b

hb =
tmb−t0

mb
=

b− t

mb
, mb ≥ 2,

(3.13)



36 CHAPTER 3. FRACTIONAL STRESS-GRADIENT...

where t ∈
[
a, b

]
and a < t < b, p, q are real numbers, and kα(t, τ) is a kernel that

depends on the order of the derivative α. Assuming that kα(t, τ) is a difference kernel

kα(t, τ) = kα(t− τ), (3.2)

and
kα ∈ L1 ([0, b− a]) . (3.3)

Then, Kα
P is defined as bounded and linear operator, i.e. Kα

P : L1 ([a, b]) → L1 ([a, b]).
Choosing the proper kernel, i.e.

kα(t− τ) =
1

Γ(α)
(t− τ)

α−1
, (3.4)

where α > 0, leads to the following integral formulas:

• for P =
〈
a, t, b, 1, 0

〉

(Kα
P f) (t) =

1

Γ(α)

t∫

a

(t− τ)α+1f(τ)dτ = (aI
α
t f) (t), (3.5)

• and for P =
〈
a, t, b, 0, 1

〉

(Kα
P f) (t) =

1

Γ(α)

b∫

t

(τ − t)α+1f(τ)dτ = (tI
α
b f) (t), (3.6)

where (aI
α
t f) (t) and (tI

α
b f) (t) denotes the left and right Riemann-Liouville fractional

integrals, respectively and Γ(α) is the Gamma function.
Next, the general kernel differential operator of Caputo type Bα

P [117] can be de-
fined as a composition of Riemann-Liouville fractional integral and classical n-th order
(n ∈ N) derivative with respect to time

Bα
P = Kn−α

P ◦ dn

dtn
, (3.7)

where α is the order of the derivative, n = �α�+ 1 and �·� denotes the floor function.
The B-operator is valid for functions f ∈ ACn([a, b]), where ACn([a, b]) denote a space
of functions which are absolutely continuous on [a, b] interval [92]. The left-sided and
the right-sided Caputo derivatives are then defined as:

(Bα
P f) (t) =

1

Γ(n− α)

t∫

a

fn(τ)

(t− τ)α−n−1
dτ = C

aD
α
t f(t), (3.8)

3.1. FRACTIONAL CALCULUS 37

where t > a, and

− (Bα
P f) (t) = − (−1)n

Γ(n− α)

b∫

t

fn(τ)

(τ − t)α−n−1
dτ = C

tD
α
b f(t), (3.9)

where t < b.
As pointed out in [160], the complete theory of fractional differential equations

can be developed only with the use of the both left and right derivatives. In order to
obtain an operator defined on a closed interval [a, b], the Riesz symmetrized Caputo
fractional derivative is used. The Riesz-Caputo (RC) fractional derivative is a two-
sided fractional operator, defined as a linear combination of left-sided and right-sided
Caputo derivatives in the following manner [55]:

Dαf(t) = RC
aD

α
b f(t) =

1

2

[
C
aD

α
t f(t) + (−1)n C

tD
α
b f(t)

]
. (3.10)

The RC fractional derivative is utilized in the next chapters of this treatise.
Finally, it should be noted that for α of integer order n (n ∈ N), the classical

derivative of order n is obtained.
Given the integral form of the fractional operator, it has to be accepted that only

for a finite set of functions the closed-form solution of the indefinite integrals exists.
Therefore, the numerical procedure for obtaining an approximate solution has to be
introduced. The discrete approximation for Caputo derivative, based on [138, 191],
reads:

• left-sided derivative

a = t0 < t1 < · · · < tk < · · · < tma
= t,

ha =
tma−t0

ma
=

t− a

ma
, ma ≥ 2,

(3.11)

C
aD

α
t f(t)|t=tma

∼=
hn−α
a

Γ(n− α+ 2)

{[
(ma − 1)n−α+1

− (ma − n+ α− 1)mn−α
a

]
f (n)(t0) + f (n)(tma

)

+

ma−1∑
k=1

[
(ma − k + 1)n−α+1 − 2(ma − k)n−α+1

+ (ma − k − 1)n−α+1
]
f (n)(tk)

}
,

(3.12)

• right-sided derivative

t = t0 < t1 < · · · < tk < · · · < tma = b

hb =
tmb−t0

mb
=

b− t

mb
, mb ≥ 2,

(3.13)



38 CHAPTER 3. FRACTIONAL STRESS-GRADIENT...

C
tD

α
b f(t)|t=t0

∼=
(−1)n hn−α

b

Γ(n− α+ 2)

{[
(ma − 1)n−α+1

− (mb − n+ α− 1)mn−α
b

]
f (n)(tmb

) + f (n)(t0)

+

mb−1∑
k=1

[
(k + 1)n−α+1 − 2kn−α+1

+ (k − 1)n−α+1
]
f (n)(tk)

}
,

(3.14)

where f (n)(tk) denotes the classical n-th order derivative at point t = tk.
A detailed explanation and implementation of this approach was given in section 3.2.3.

3.2. Fractional viscoplastic flow rule

3.2.1. Perzyna’s theory of viscoplasticity

Rate-dependent material models stem from experimental results suggesting that the
velocity of deformation plays a significant role in describing the material response. In
continuum mechanics, a theory that describes a rate-dependent inelastic behaviour of
solid materials is known as viscoplasticity. Foundations of viscoplasticity were laid by
Hohenemser and Prager in [78]. Further development and in-depth study was done by
Perzyna in works [148], [149], [150] and [155].

In classical Perzyna’s approach for small strain theory, an additive decomposition of
total strain tensor (εεε) into the sum of elastic (εεεe) and inelastic (εεεp) components is one
of the main assumptions [111]. Because of the rate-dependence in Perzyna’s theory,
inelastic components are refered to as the viscoplastic strain tensor and represented by
(εεεvp). Hence the decomposition has the following form

εεε = εεεe + εεεvp, (3.15)

and the corresponding rate form reads

ε̇εε = ε̇εεe + ε̇εεvp. (3.16)

Moreover, the stress is assumed to be related to the elastic strain by means of standard
linear constitutive relation

σ = Le : εεεe, (3.17)

where Le denotes the 4th order tensor of elastic constants and ’:’ indicates double
contraction of tensors. Static yield condition is no different than the initial yield
condition in the inviscid plasticity and is given by

F (σ) =
f(σ)

κ
− 1, (3.18)

3.2. FRACTIONAL VISCOPLASTIC FLOW RULE 39

where f(σ) is a shear yield function and κ denotes static yield stress in simple shear. It
must be pointed out that in general, function f may also depend on the state variables,
e.g. viscoplastic strain or temperature. Yield stress κ also may be a function of state
variables but in Eq. (3.18) it is assumed to be constant.

The assertion that plastic flow may occur only when F = 0 translates into a surface
in six-dimensional stress space that is assumed to be regular and convex. Therefore,
a plastic flow rule can be proposed as [148]

ε̇εεvp = γ0
〈
Φ
(
F
)〉∂F

∂σ
, (3.19)

or in different form
ε̇εεvp = γ

〈
Φ
(
F
)〉 ∂f

∂σ
, (3.20)

where γ = γ0/κ is a viscosity-related parameter, Φ
(
F
)

denotes the function that
reflects dynamic behaviour of metal under consideration and ∂/∂σ notation represents
classical partial derivative with respect to stress. Symbol 〈.〉 is used to represent
Macaulay brackets

〈
Φ
(
F
)〉

=

{
0 Φ

(
F
)
≤ 0

Φ
(
F
)

Φ
(
F
)
> 0

. (3.21)

Regardless of the form, the plastic flow rule reveals the supposition that the rate of
increase of inelastic part of strain tensor depends on the excess stress over the static
yield condition [149].

Among various yield criteria that have been suggested for metals, the Huber-Mises-
Hencky [73, 81, 129] fits experimental data closely than others [77]. Therefore, the yield
function is equal to

f(σ) = (J ′
2)

1/2, (3.22)

where J ′
2 = (s : s)/2 represents the second invariant of the stress deviator s. Plastic

flow rule in terms of the deviatoric stress then has the form

ε̇εεvp = γ

〈
Φ

(√
J ′
2

κ
− 1

)〉
s√
J ′
2

. (3.23)

By squaring Eq. (3.20) and introducing the second invariant of an inelastic strain-rate
tensor as IP2 = (ε̇εεvp : ε̇εεvp)/2 the following formula can be obtained

√
IP2 = γ Φ

(√
J ′
2

κ
− 1

)
. (3.24)

The above relation, when expressed in terms of IP2 , assumes the form

√
J ′
2 = κ

[
1 + Φ−1

(√
IP2
γ

)]
. (3.25)
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This is referred to as the dynamic yield condition for viscoplastic materials and implic-
itly provides a yield criterion that depends on the strain rate.

The above mentioned evolution equation (proposed by Naghdi and Murch in [134]
and later developed by Perzyna [158]) can be written in a compact form

ε̇εεvp = Λp, (3.26)

where scalar multiplier Λ represents the intensity of viscoplastic flow and p is a normal-
ized second-order tensor denoting the direction of the flow. The direction of viscoplastic
flow considering static yield condition as in Eq. (3.18) and HMH criterion, is then given
via

p =
∂F

∂σ

(∥∥∥∥
∂F

∂σ

∥∥∥∥
)−1

=
s√
J ′
2

. (3.27)

Thus, in classical viscoplasticity is it assumed that p is perpendicular (normal) to
the pressure-independent yield surface. This implies that viscoplastic strain increment
has the same direction as p; this is called associated flow rule and the assumption of
co-directionality is called the normality condition.

The intensity of viscoplastic flow is governed by Λ and can be written as

Λ = γ
〈
Φ
(
F
)〉
. (3.28)

Among different possibilities, the exponential form of the overstress function Φ was
considered in [148] and [43] as

Φ(F ) = Fm =

(√
J ′
2

κ
− 1

)m

, (3.29)

where m denotes the scalar parameter used to scale the rate-sensitivity of the model.
Moreover, viscous properties can be expressed by the means of time relaxation of
mechanical disturbances Tm = 1/γ. Finally, the application of (3.28) and (3.29) to
(3.26) yields the expression

Λ =
1

Tm

〈√
J ′
2

κ
− 1

〉m

. (3.30)

It is worth pointing out that relaxation time Tm is a contributing factor in the model
sensitivity since it is included in the length-scale parameter l, via

l = α̂ ĉ Tm, (3.31)

where ĉ denotes elastic wave propagation velocity and α̂ denotes a proportionality
factor. Therefore, Tm interpretation is twofold: (i) as a microstructural parameter
determined experimentally or (ii) as a mathematical regularization parameter [157,
186].
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3.2.2. Fractional viscoplasticity – basic approach

The direction of viscoplastic flow (3.27) is obtained by calculating the first-order partial
derivative with respect to stress components. By applying the fractional derivative
instead of classical a general approach is introduced, where the order of the operator (α)
can be changed. This formulation has also an important feature mentioned in chapter
3.1, namely that for α = 1 the well-known Perzyna-type viscoplasticity (presented in
3.2.1) is obtained. The direction of viscoplastic flow is given by

p = DαF ‖DαF‖−1
, (3.32)

where Dα stands for the Riesz-Caputo fractional operator – see Eq. (3.10). Thus, the
rate of increase of inelastic (viscoplastic) part of strain tensor has the following form

ε̇εεvp = Λ
DαF

‖DαF‖
=

1

Tm

〈√
J ′
2

κ
− 1

〉m
DαF

‖DαF‖
. (3.33)

The viscoplastic flow direction (3.27) is expressed solely in terms of the stress de-
viator, which leads to the conclusion that a volume change can happen only in the
elastic range. Previous studies [192, 200] have reported that volume increase can be
controlled by inelastic material models that utilize fractional calculus. To achieve the
foregoing result in classical plasticity theories a different potential has to be assumed
in Eq. (3.27), which requires additional material parameters that have to be specified.
Moreover, the change of the operator also results in a non-associate flow which is de-
sirable, e.g. when granular or porous materials are regarded [186]. This section has
reviewed these two features that enhance classical theory and transform it into a more
flexible tool for modelling viscoplastic materials.

3.2.3. Implementation – VUMAT subroutine

In this chapter, the formulation and numerical implementation of a three-dimensional
elastic-viscoplastic isotropic model generalized in the framework of fractional calculus
is presented. The following approach is based on the explicit FEM analysis that is
recommended for solving dynamic nonlinear problems. It follows the conventions im-
posed by Abaqus\Explicit interface for VUMAT user subroutines used to implement
new material models.

By restating the strain tensor according to the Voigt’s notation as

εεε = (ε11 ε22 ε33 ε23 ε13 ε12)
T
= (ε1 ε2 ε3 ε4 ε5 ε6)

T (3.34)
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This is referred to as the dynamic yield condition for viscoplastic materials and implic-
itly provides a yield criterion that depends on the strain rate.

The above mentioned evolution equation (proposed by Naghdi and Murch in [134]
and later developed by Perzyna [158]) can be written in a compact form

ε̇εεvp = Λp, (3.26)

where scalar multiplier Λ represents the intensity of viscoplastic flow and p is a normal-
ized second-order tensor denoting the direction of the flow. The direction of viscoplastic
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∂F

∂σ

(∥∥∥∥
∂F

∂σ

∥∥∥∥
)−1

=
s√
J ′
2

. (3.27)

Thus, in classical viscoplasticity is it assumed that p is perpendicular (normal) to
the pressure-independent yield surface. This implies that viscoplastic strain increment
has the same direction as p; this is called associated flow rule and the assumption of
co-directionality is called the normality condition.

The intensity of viscoplastic flow is governed by Λ and can be written as

Λ = γ
〈
Φ
(
F
)〉
. (3.28)

Among different possibilities, the exponential form of the overstress function Φ was
considered in [148] and [43] as

Φ(F ) = Fm =

(√
J ′
2

κ
− 1

)m

, (3.29)

where m denotes the scalar parameter used to scale the rate-sensitivity of the model.
Moreover, viscous properties can be expressed by the means of time relaxation of
mechanical disturbances Tm = 1/γ. Finally, the application of (3.28) and (3.29) to
(3.26) yields the expression
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Tm
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J ′
2

κ
− 1

〉m

. (3.30)

It is worth pointing out that relaxation time Tm is a contributing factor in the model
sensitivity since it is included in the length-scale parameter l, via

l = α̂ ĉ Tm, (3.31)

where ĉ denotes elastic wave propagation velocity and α̂ denotes a proportionality
factor. Therefore, Tm interpretation is twofold: (i) as a microstructural parameter
determined experimentally or (ii) as a mathematical regularization parameter [157,
186].
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3.2.2. Fractional viscoplasticity – basic approach

The direction of viscoplastic flow (3.27) is obtained by calculating the first-order partial
derivative with respect to stress components. By applying the fractional derivative
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can be changed. This formulation has also an important feature mentioned in chapter
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The viscoplastic flow direction (3.27) is expressed solely in terms of the stress de-
viator, which leads to the conclusion that a volume change can happen only in the
elastic range. Previous studies [192, 200] have reported that volume increase can be
controlled by inelastic material models that utilize fractional calculus. To achieve the
foregoing result in classical plasticity theories a different potential has to be assumed
in Eq. (3.27), which requires additional material parameters that have to be specified.
Moreover, the change of the operator also results in a non-associate flow which is de-
sirable, e.g. when granular or porous materials are regarded [186]. This section has
reviewed these two features that enhance classical theory and transform it into a more
flexible tool for modelling viscoplastic materials.

3.2.3. Implementation – VUMAT subroutine

In this chapter, the formulation and numerical implementation of a three-dimensional
elastic-viscoplastic isotropic model generalized in the framework of fractional calculus
is presented. The following approach is based on the explicit FEM analysis that is
recommended for solving dynamic nonlinear problems. It follows the conventions im-
posed by Abaqus\Explicit interface for VUMAT user subroutines used to implement
new material models.
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and recalling the form of stress tensor (2.97), Hooke’s law (3.17) can be written as
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ε4
ε5
ε6




, (3.35)

where G = E/2(1 + ν) and λ = Eν/(1 + ν)(1 − 2ν) are elastic constants and E and
ν denotes Young’s modulus and Poisson’s ratio, respectively. Elements in the strain
tensor can be classified either as normal (ε11, ε22, ε33) or shear (ε23, ε13, ε12) strains.
The viscoplastic flow rule (3.33) can be postulated in the incremental form

∆εεεvp = ∆Λp, (3.36)

where p is expressed in the six-dimensional space

p = (p1 p2 p3 p4 p5 p6)
T
. (3.37)

Having in mind the requirement bestowed by the fractional derivative in Eqs. (3.12)
and (3.14), lower and upper bounds has to be set to fulfill the condition [190]

ai < σi < bi. (3.38)

The aforementioned bounds can be expressed in terms of distance from a certain point
in the stress space σi, which can be written in the form

ai = σi −∆L
i , bi = σi +∆R

i , (3.39)

where
∆L =

(
∆L

1 ∆L
2 ∆L

3 ∆L
4 ∆L

5 ∆L
6

)T
, (3.40)

and
∆R =

(
∆R

1 ∆R
2 ∆R

3 ∆R
4 ∆R

5 ∆R
6

)T
(3.41)

∆L and ∆R are regarded as material parameters that introduce non-locality in the
stress space. Therefore the existence of a virtual surrounding is assumed – cf. Fig 3.1.
The superscripts (·)L and (·)R refer to the left and right Caputo derivatives, respec-
tively. The local neighbourhood of a material point can be interpreted as a (homog-
enized) phenomenological measure of some instability [200]. With regards to metals,
the foregoing may result from nucleation of dislocations [30, 161, 222], nucleation of
voids [121] or grains breakup mechanism [82, 100, 181] (cf. review paper [124]).

In order to calculate the direction of viscoplastic flow, the bounds of the virtual
surrounding a and b have to be established. By analogy with p, the following can be
written

a = (a1 a2 a3 a4 a5 a6)
T
, (3.42)
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Figure 3.1. Virtual surrounding of a material point [191]

and
b = (b1 b2 b3 b4 b5 b6)

T
. (3.43)

Each component of ∆L and ∆R is then subdivided into ma and mb discrete intervals
with length

ha =
1

ma
∆L = (ha

1 ha
2 ha

3 ha
4 ha

5 ha
6)

T
, (3.44)

and
hb =

1

mb
∆R =

(
hb
1 hb

2 hb
3 hb

4 hb
5 hb

6

)T
, (3.45)

where ha and ha denote the spacing between points in the discretized stress space, and
ma and mb denote the number of subintervals – cf. Fig. 3.2. In general, the distance
between points and the number of subintervals is different for each component of ∆L

and ∆R. The total number of points in the numerical approximation is given by formula

np = (ma − 1) + (mb − 1) + 3. (3.46)

In this treatise, it was assumed that ma = mb = 2.
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∆L and ∆R are regarded as material parameters that introduce non-locality in the
stress space. Therefore the existence of a virtual surrounding is assumed – cf. Fig 3.1.
The superscripts (·)L and (·)R refer to the left and right Caputo derivatives, respec-
tively. The local neighbourhood of a material point can be interpreted as a (homog-
enized) phenomenological measure of some instability [200]. With regards to metals,
the foregoing may result from nucleation of dislocations [30, 161, 222], nucleation of
voids [121] or grains breakup mechanism [82, 100, 181] (cf. review paper [124]).

In order to calculate the direction of viscoplastic flow, the bounds of the virtual
surrounding a and b have to be established. By analogy with p, the following can be
written

a = (a1 a2 a3 a4 a5 a6)
T
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where ha and ha denote the spacing between points in the discretized stress space, and
ma and mb denote the number of subintervals – cf. Fig. 3.2. In general, the distance
between points and the number of subintervals is different for each component of ∆L

and ∆R. The total number of points in the numerical approximation is given by formula

np = (ma − 1) + (mb − 1) + 3. (3.46)

In this treatise, it was assumed that ma = mb = 2.
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Figure 3.2. Discrete approximation of a non-local neighbourhood of a material point
presented in a two-dimensional plane

The next step is to construct a P matrix containing coefficients from Eqs. (3.12)
and (3.14), which has np rows and 6 columns. Matrix elements depend on the order of
derivative α and the number of intervals, i.e. ma and mb. Thus, the elements of P can
be obtained at the beginning of calculations without a need to be reevaluated further
in the process, by following this definitions:

• for i = 1

Pij =
1

2
Γa
j

[
(ma − 1)n−α+1 − (ma − n+ α− 1)mn−α

a

]
, (3.47)

• for i = (2, 3, . . . ,ma)

Pij =
1

2
Γa
j

[
(ma − j + 1)n−α+1 − 2(ma − j)n−α+1 − (ma − j − 1)n−α+1

]
,

(3.48)

• for i = ma + 1

Pij =
1

2

(
Γa
j + (−1)nΓb

j

)
, (3.49)

• for i = (ma + 2,ma + 3, . . . , np − 1)

Pij =
(−1)n

2
Γb
j

[
(j + 1)n−α+1 − 2jn−α+1 − (j − 1)n−α+1

]
, (3.50)

• for i = np

Pij =
(−1)n

2
Γb
j

[
(mb − 1)n−α+1 − (mb − n+ α− 1)(mb)

n−α
]
, (3.51)
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where
Γa
j =

1

Γ (n− α+ 2)

(
ha
j

)n−α
, (3.52)

Γb
j =

1

Γ (n− α+ 2)

(
hb
j

)n−α
. (3.53)

The second element necessary to determine the direction p is a matrix Z comprised
of stress states in the neighbourhood of the material point. It has the same size as
matrix P , i.e. np rows and 6 columns. The definition of Z is given in the following
form:

• for i = 1

Zij = σj − aj , (3.54)

• for i = (2, 3, . . . ,ma)

Zij = σj − aj + iha
j , (3.55)

• for i = ma + 1

Zij = σj , (3.56)

• for i = (ma + 2,ma + 3, . . . , np − 1)

Zij = σj + ihb
j , (3.57)

• for i = np

Zij = σj + bj . (3.58)

The final formula for the direction of viscoplastic flow is given by

pi = PijMij , (3.59)

where
Mij =

∂F

∂σj

∣∣∣
σj=Zij

, (3.60)

for i = (1, 2, . . . , np), j = (1, 2, . . . , 6). The components of the matrix M are first-order
partial derivatives of the static yield condition evaluated at subsequent values of Z. It
is worth noting that the accuracy of the solution can be improved by increasing the
number of points of the approximation. However, large values of ma and mb will result
in longer computations, so should be chosen reasonably. The sensitivity of the solution
as a function of these parameters was studied in [191].

As mentioned before, based on the numerical formulation of fractional viscoplastic-
ity, the VUMAT subroutine was created. The corresponding numerical algorithm was
summarized in Fig. 3.3, highlighting the essential steps involved in the actual numeri-
cal implementation. Given the strain-space formulation [177], the VUMAT procedure
aims at calculating and updating values of the Cauchy stress and internal variables, at
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is worth noting that the accuracy of the solution can be improved by increasing the
number of points of the approximation. However, large values of ma and mb will result
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as a function of these parameters was studied in [191].

As mentioned before, based on the numerical formulation of fractional viscoplastic-
ity, the VUMAT subroutine was created. The corresponding numerical algorithm was
summarized in Fig. 3.3, highlighting the essential steps involved in the actual numeri-
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Given parameters: E, ν, κ, Tm,m
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Figure 3.3. VUMAT subroutine flowchart for the fractional viscoplastic rule
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time step tn+1, based on the values from the previous time frame tn and total strain
increment ∆εεεn+1. The following notation is adopted

∆(·) ≡ (·)n+1 − (·)n, (3.61)

where (·)n and (·)n+1 denote the value of (·) respectively at tn and tn+1 [33]. More-
over, notations εεε(tn+1) and εεεn+1, are equivalent, i.e. εεε(tn+1) = εεεn+1. At the onset, the
trial stress tensor is obtained and used to check the yield condition. If the condition
is fulfilled, the value of the plastic multiplier Λ and the direction p are calculated;
otherwise, the elastic part of the procedure is executed. A similar flowchart was pre-
sented in [200], except that it was based on analytical solution for the Riesz-Caputo
derivative.

3.3. Benchmark tests – the cube-shaped volume element under
tension load

The aim of this section is to conduct a parametric investigation of the fractional vis-
coplastic model at the material point level. Therefore, the unit cube (1 mm × 1 mm
× 1 mm) was modeled and discretized by a single finite element C3D8R (linear, eight-
node brick with reduced integration). The conditions of a uniaxial tension test were
obtained by applying boundary conditions as in Fig. 3.4. Material parameters were
selected to represent a generic metallic material, thus E = 205 GPa, ν = 0.27 and
κ = 605 MPa. In what follows, the attention is focused on parameters that come from
the fractional approach as well as the viscoplastic formulation, namely:

• α – order of the derivative,

• ∆L – left-sided stress-fractional spread,

• ∆R – right-sided stress-fractional spread,

• Tm – relaxation time,

• m – rate-sensitivity parameter.

To explicitly indicate the direction to which ∆ parameter is referring, the notation
of the second rank tensor with two indices is more useful than a notation that uses
one. So the following can be written

∆L =
(
∆L

1 ∆L
2 ∆L

3 ∆L
4 ∆L

5 ∆L
6

)T ≡
(
∆L

11 ∆L
22 ∆L

33 ∆L
23 ∆L

13 ∆L
12

)T
, (3.62)

and

∆R =
(
∆R

1 ∆R
2 ∆R

3 ∆R
4 ∆R

5 ∆R
6

)T ≡
(
∆R

11 ∆R
22 ∆R

33 ∆R
23 ∆R

13 ∆R
12

)T
. (3.63)
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time step tn+1, based on the values from the previous time frame tn and total strain
increment ∆εεεn+1. The following notation is adopted
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where (·)n and (·)n+1 denote the value of (·) respectively at tn and tn+1 [33]. More-
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trial stress tensor is obtained and used to check the yield condition. If the condition
is fulfilled, the value of the plastic multiplier Λ and the direction p are calculated;
otherwise, the elastic part of the procedure is executed. A similar flowchart was pre-
sented in [200], except that it was based on analytical solution for the Riesz-Caputo
derivative.
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The aim of this section is to conduct a parametric investigation of the fractional vis-
coplastic model at the material point level. Therefore, the unit cube (1 mm × 1 mm
× 1 mm) was modeled and discretized by a single finite element C3D8R (linear, eight-
node brick with reduced integration). The conditions of a uniaxial tension test were
obtained by applying boundary conditions as in Fig. 3.4. Material parameters were
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• α – order of the derivative,

• ∆L – left-sided stress-fractional spread,

• ∆R – right-sided stress-fractional spread,

• Tm – relaxation time,

• m – rate-sensitivity parameter.
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of the second rank tensor with two indices is more useful than a notation that uses
one. So the following can be written
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Figure 3.4. Model of a cube restricted to uniaxial tension

In this treatise, it was assumed that the values of the left-sided and right-sided ∆

vectors are equal, i.e. ∆L = ∆R. Therefore, the superscripts (·)L and (·)R are omitted
further in the text.

In order to properly isolate and examine the influence of the aforementioned pa-
rameters, the numerical analysis were separated into two groups. The first one is con-
cerned only with parameters that come from the fractional operator, i.e. the order
of the derivative (α) and the ∆ parameter. The second group is concerned with the
study of quantities that govern the viscoplastic flow – relaxation time (Tm) and rate-
sensitivity parameter (m). The results presented in this chapter have been published
in [200].

3.3.1. Study of the influence of the fractional parameters

Two types of plots were used to study the influence of ∆ and α on the dynamic response
of the fractional viscoplastic model. The material anisotropy manifests itself in the di-
rectionally dependent evolution of deformation and can be observed on the charts that
highlight the relation between normal strains ε11, ε22, ε33. The dynamic behaviour is
best depicted on a stress-strain relation, in this particular case the tension direction (2)
was selected for in-depth study. Numerical analyses were conducted for two displace-
ment velocities v = 1 and v = 25 m/s, and the set α ∈ {0.1, 0.25, 0.5, 0.75, 0.99, 1.0}.
The material parameters Tm = 2.5e−6 s and m = 1 were assumed after [184].

Based on the previous studies [190] the anisotropic behaviour of the fractional
model was to be expected. The foregoing effect can be observed when one of the
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Figure 3.5. Influence of the order α and the value of material parameter ∆22 on the
stress-strain relation, constant parameters: v = 1 m/s, Tm = 2.5e−6 s, m = 1 [200]

components of the vector ∆ is different than others. Hence, the two cases were chosen
to study: for the direction of applied tension, ∆22 = 0.005κ ≈ 3.0 MPa and the
direction perpendicular to the tension, ∆11 = 0.005κ ≈ 3.0 MPa. The intermediate
value ∆ = 0.0033κ ≈ 2.0 MPa was also analyzed to capture the development of the
anisotropy in the material. The other values remained equal to 0.0017κ ≈ 1.0 MPa.

Figure 3.6. Influence of the order α and the value of material parameter ∆22 on the
stress-strain relation, constant parameters: v = 25 m/s, Tm = 2.5e−6 s, m = 1 [200]
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Figure 3.7. Influence of the order α and the value of material parameter ∆11 on the
stress-strain relation, constant parameters: v = 1 m/s, Tm = 2.5e−6 s, m = 1 [200]

Fractional parameters in the (2) direction

Fig. 3.5 presents material behaviour under various values of α for the velocity v =

1 m/s. In general, changing α and ∆ modifies the dynamic properties, but the velocity
applied in this case was insufficient to reveal it. For v = 25 m/s, depicted in Fig. 3.6,
a waveform is forming already for ∆22 = 1.0, and for larger values, it gets more
pronounced. The amplitude of the stress wave increases with the increasing value of
∆. Conversely, it also grows when the value of α is decreasing. Is also should be
pointed out that a slope can be observed in Fig. 3.6, particularly visible for ∆22 = 1.0.
Since this is a perfectly viscoplastic model (κ = const), this effect is not caused by
the softening of the material, rather it is due to lateral stresses induced by the inertia
effects.

Fractional parameters in the (1) direction

The sole difference between the parameters set examined in this section and the one
studied in the previous section lays in the direction of the ∆. Here, the effects of the
different values of ∆11 were investigated – it is a direction perpendicular to the applied
load. Similarly to the preceding case, the velocity v = 1 m/s was too small for the ∆

and α to have any effect on the stress-strain relation – Fig. 3.7. However, the relation
between normal strains depicted in Fig. 3.8, strongly depends on the values of ∆ and
α. Since the value of ∆11 increases in the direction (1), which is perpendicular to the
direction of applied load, it is expected that it will affect the corresponding strain,
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Figure 3.8. Influence of the order α and the value of material parameter ∆11 on the
relation between three normal strains, constant parameters: v = 1 m/s, Tm = 2.5e−6 s,
m = 1 [200]

namely ε11. It can be concluded that material deform more easily in the (1) direction,
thus ε11/ε33 ratio is greater than 1. This effect grows proportionally to the value of ∆
and inversely to the value of α.

Next, the case for v = 25 m/s was considered. Fig. 3.9 shows that, besides the
already discussed impact of ∆ and α on the stress wave, material hardening dependent
on the order of the fractional operator can be observed. Also, the amplitude oscillations
become more pronounced as the α diminishes to zero. The effects observed in Fig. 3.10
are very similar to those in Fig. 3.8, with the difference that a wave pattern is visible
as a result of increased velocity.

3.3.2. Study of the material parameters of the viscoplastic models

This section aims to investigate the influence of the relaxation time Tm and the rate-
sensitivity parameter m on the dynamic response of the fractional model. Similarly to
section 3.3.1, two types of charts were used. Two directions, parallel and perpendicular
to the applied load, were here also analyzed although only for one value of ∆. In order
to compare classical viscoplasticity to its fractional counterpart each set of parameters
was examined for α = 1, indicated by the star symbol (∗) on charts. Also, to illustrate
the full range of dynamic behaviours three velocities were used, namely v = 1, 25 and
50 m/s.



50 CHAPTER 3. FRACTIONAL STRESS-GRADIENT...

Figure 3.7. Influence of the order α and the value of material parameter ∆11 on the
stress-strain relation, constant parameters: v = 1 m/s, Tm = 2.5e−6 s, m = 1 [200]

Fractional parameters in the (2) direction

Fig. 3.5 presents material behaviour under various values of α for the velocity v =

1 m/s. In general, changing α and ∆ modifies the dynamic properties, but the velocity
applied in this case was insufficient to reveal it. For v = 25 m/s, depicted in Fig. 3.6,
a waveform is forming already for ∆22 = 1.0, and for larger values, it gets more
pronounced. The amplitude of the stress wave increases with the increasing value of
∆. Conversely, it also grows when the value of α is decreasing. Is also should be
pointed out that a slope can be observed in Fig. 3.6, particularly visible for ∆22 = 1.0.
Since this is a perfectly viscoplastic model (κ = const), this effect is not caused by
the softening of the material, rather it is due to lateral stresses induced by the inertia
effects.

Fractional parameters in the (1) direction

The sole difference between the parameters set examined in this section and the one
studied in the previous section lays in the direction of the ∆. Here, the effects of the
different values of ∆11 were investigated – it is a direction perpendicular to the applied
load. Similarly to the preceding case, the velocity v = 1 m/s was too small for the ∆

and α to have any effect on the stress-strain relation – Fig. 3.7. However, the relation
between normal strains depicted in Fig. 3.8, strongly depends on the values of ∆ and
α. Since the value of ∆11 increases in the direction (1), which is perpendicular to the
direction of applied load, it is expected that it will affect the corresponding strain,

3.3. BENCHMARK TESTS – THE CUBE-SHAPED VOLUME... 51

Figure 3.8. Influence of the order α and the value of material parameter ∆11 on the
relation between three normal strains, constant parameters: v = 1 m/s, Tm = 2.5e−6 s,
m = 1 [200]

namely ε11. It can be concluded that material deform more easily in the (1) direction,
thus ε11/ε33 ratio is greater than 1. This effect grows proportionally to the value of ∆
and inversely to the value of α.

Next, the case for v = 25 m/s was considered. Fig. 3.9 shows that, besides the
already discussed impact of ∆ and α on the stress wave, material hardening dependent
on the order of the fractional operator can be observed. Also, the amplitude oscillations
become more pronounced as the α diminishes to zero. The effects observed in Fig. 3.10
are very similar to those in Fig. 3.8, with the difference that a wave pattern is visible
as a result of increased velocity.

3.3.2. Study of the material parameters of the viscoplastic models

This section aims to investigate the influence of the relaxation time Tm and the rate-
sensitivity parameter m on the dynamic response of the fractional model. Similarly to
section 3.3.1, two types of charts were used. Two directions, parallel and perpendicular
to the applied load, were here also analyzed although only for one value of ∆. In order
to compare classical viscoplasticity to its fractional counterpart each set of parameters
was examined for α = 1, indicated by the star symbol (∗) on charts. Also, to illustrate
the full range of dynamic behaviours three velocities were used, namely v = 1, 25 and
50 m/s.



52 CHAPTER 3. FRACTIONAL STRESS-GRADIENT...

Figure 3.9. Influence of the order α and the value of material parameter ∆11 on the
stress-strain relation, constant parameters: v = 25 m/s, Tm = 2.5e−6 s, m = 1 [200]

Figure 3.10. Influence of the order α and the value of material parameter ∆11 on
the relation between three normal strains, constant parameters: v = 25 m/s, Tm =
2.5e−6 s, m = 1 [200]
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Figure 3.11. Influence of the relaxation parameter Tm and the value of applied velocity
field v on the stress-strain relation, constant parameters: α = 0.75, m = 1, ∆22 = 3.0
[200]

Fractional parameters in the (2) direction

Here, the viscoplastic flow is induced in the direction of applied load by ∆22 = 3.0 MPa.
In Fig. 3.11 the effects of different relaxation times were captured. Material hardening
can be observed with the increase of Tm, as well as the decrease in the amplitude of
oscillations. For Tm = 2.5e−5 s, the separation between classical and fractional models
is also significantly greater, than for other values.

Fig. 3.12 shows the consequences of the different values of m. It can be noticed
that the grow of m is correlated with a decrease of oscillations and an increase in the
stress levels. The strain-rate hardening, observed in Fig. 3.11 and 3.12, derive from the
viscoplastic formulation. Also, on both charts, the stress-strain relations for α = 0.75

produces lower stress levels when compared to the classical solution.

Fractional parameters in the (1) direction

In this section, the intensified viscoplastic flow was induced in the direction perpen-
dicular to the displacement field (∆11 = 3.0 MPa). Fig. 3.13 presents the effect of the
various values of Tm similar to what could be observed in the previous section, namely
the increase of the relaxation time is reflected in the hardening of the material. The
ε11/ε33 ratio in Fig. 3.14 reveals the anisotropic character of deformation for α = 0.75,
whereas for α = 1 material exhibits isotropic behavior. The rate-sensitivity parameter
m holds true to its name, as shown in Fig. 3.15, since its change has a direct effect
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Figure 3.12. Influence of the material parameter m and the value of applied velocity
field v on the stress-strain relation, constant parameters: α = 0.75, Tm = 2.5e−6 s,
∆22 = 3.0 [200]

on the stress level, without any apparent change to the frequency of oscillations. By
increasing the value of m in Fig. 3.16, the wave pattern becomes more pronounced,
especially for lower velocities. Moreover, the stress levels, depicted in Fig. 3.13 and
3.15, are generally greater for α = 0.75 then for standard viscoplasticity (α = 1.0).
This result is distinctly different from what could be observed for the case where pa-
rameters were chosen to ensure the viscoplastic flow along the load direction, i.e. (2)
direction – cf. Fig. 3.11 and 3.12. Thus, it suggests that the fractional approach also
describes a degree of anisotropy observed in the inelastic dispersion of the stress wave.

3.3.3. Study of the dispersive nature of the fractional viscoplastic
model

As was shown in the previous section, the introduction of fractional parameters induces
directional dependence in the energy dispersion of the stress wave. The aim of this
section is to verify if this type of anisotropy occurs when the frequency of a wave is
considered. The measure of the regularity was obtained by calculating the average
distance between peaks, which yields a period of oscillation later translated into wave
frequency. In Tab. 3.1 results for two values of material parameter ∆ were shown;
these results were depicted in the middle graphs of Figs. 3.11 and 3.13. The foregoing
corresponds to cases where the viscoplastic flow is induced in the direction parallel
(2) and perpendicular (1) to the applied velocity. As predicted, for α = 1 classical
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Figure 3.13. Influence of the relaxation parameter Tm and the value of applied velocity
field v on the stress-strain relation, constant parameters: α = 0.75, m = 1, ∆11 = 3.0
[200]

Figure 3.14. Influence of the relaxation parameter Tm and the value of applied velocity
field v on the relation between three normal strains, constant parameters: α = 0.75,
m = 1, ∆11 = 3.0 [200]
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Figure 3.13. Influence of the relaxation parameter Tm and the value of applied velocity
field v on the stress-strain relation, constant parameters: α = 0.75, m = 1, ∆11 = 3.0
[200]

Figure 3.14. Influence of the relaxation parameter Tm and the value of applied velocity
field v on the relation between three normal strains, constant parameters: α = 0.75,
m = 1, ∆11 = 3.0 [200]
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Figure 3.15. Influence of the material parameter m and the value of applied velocity
field v on the stress-strain relation, constant parameters: α = 0.75, Tm = 2.5e−6 s,
∆11 = 3.0 [200]

Figure 3.16. Influence of the material parameter m and the value of applied velocity
field v on the relation between three normal strains, constant parameters: α = 0.75,
Tm = 2.5e−6 s, ∆11 = 3.0 [200]
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Table 3.1. Frequency (in MHz) of the stress waves for material parameters Tm =
2.5e−6 s, m = 1 [200]

∆22 = 3.0 [MPa] ∆11 = 3.0 [MPa]

v = 25 m/s
α = 1 2.085 2.085

α = 0.75 2.108 1.996

v = 50 m/s
α = 1 2.073 2.073

α = 0.75 2.157 2.028

Table 3.2. Frequency (in MHz) of the stress waves ∆22 = 3.0 MPa, v = 50 m/s,
α = 0.75 [200]

Tm [s]

Tm = 2.5e−7 s Tm = 2.5e−6 s Tm = 2.5e−5 s

m = 1
α = 1 2.073 2.073 2.274

α = 0.75 2.157 2.157 2.288

m = 2
α = 1 2.073 2.085 2.182

α = 0.75 2.157 2.157 2.207

m = 3
α = 1 2.073 2.085 2.169

α = 0.75 2.157 2.157 2.182

viscoplasticity is obtained, therefore ∆ parameters do not influence of the frequency.
However, for α = 0.75 the frequency depends on the inelastic anisotropy introduced
by the material parameter ∆; this is observed for two different velocities.

Tab. 3.2 collects the data from the study conducted in section 3.3.2, regarding
the effects of various values of Tm and m. The smallest impact was found for the
m parameter since the only changed was recorded for Tm = 2.5e−5 s. For this set of
parameters, both for α = 1 and α = 0.75, the increase of the rate-sensitivity parameter
causes the reduction of the frequency. For every value of α and m, the change in
frequency is negligibly small for two first columns, i.e. Tm = 2.5e−7 s and Tm =

2.5e−6 s. However, considering the increase in value from Tm = 2.5e−6 s to Tm =

2.5e−5 s, a significant increment of the frequency can be observed.
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Figure 3.15. Influence of the material parameter m and the value of applied velocity
field v on the stress-strain relation, constant parameters: α = 0.75, Tm = 2.5e−6 s,
∆11 = 3.0 [200]

Figure 3.16. Influence of the material parameter m and the value of applied velocity
field v on the relation between three normal strains, constant parameters: α = 0.75,
Tm = 2.5e−6 s, ∆11 = 3.0 [200]
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3.3.4. Conclusions

In this chapter, a generalization of the elastic-viscoplastic material model in the frame-
work of the fractional calculus was presented. Firstly, a concept of a non-integer order
derivative was introduced along with a numerical approach for obtaining an approxi-
mate solution. Subsequently, the Perzyna-type viscoplasticity was outlined and then
modified by replacing an integer-order differential operator with the fractional. This
new approach requires numerical implementation, which was discussed in detail and
depicted on the flowchart for the clarity’s sake. Finally, the effects of parameters that
derive from both rate-dependent (viscous) and non-local (fractional) formulation of the
model were studied in a series of analyses. The uniaxial tension was achieved by ap-
plying the displacement field on the elementary unit cube. By observing deformation
in the principle directions and stress-strain relation for various sets of parameters, the
following conclusions were drawn:

• fractional viscoplasticity adds two new material parameters, i.e. the order of the
viscoplastic flow α and stress-fractional spread ∆,

• fractional parameters (α and ∆) change the dynamic properties of the material
model, particularly: the rate-dependent hardening, the character of the stress
waves and induce inelastic anisotropy,

• relaxation time Tm and the rate-sensitivity parameter m, which originate from
the Perzyna model of viscoplasticity, modify the stress wave propagation and
strain-rate hardening,

• viscoplastic anisotropy manifests itself in the directionally dependent change of
dimensions and stress level in the stress-strain curve,

• stress wave energy dissipation exhibits anisotropy which is observed as the direc-
tional change of the wave frequency.

Chapter 4

Fractional viscoplasticity
with extended constitutive structure

4.1. General remarks

The fractional viscoplasticity presented in the previous chapter comprises the Perzyna-
type viscoplasticity and the stress-fractional framework in which the former was em-
bedded. However, the theory that accounts only for the strain-rate hardening may be
considered insufficient to model certain substances, such as porous metals and granular
materials. Many effects, including microdamage mechanism, thermo-mechanical coup-
ling and fracture criterion, reflect important physical phenomena that were observed in
experiments. The aim of this chapter is twofold. First, the constitutive structure that
incorporates the aforementioned effects with the fractional viscoplasticity is going to
be proposed. Second, through a series of numerical experiments the localization and
development of shear bands in the dynamical tensile tests will be examined.

4.2. Thermo-mechanical response and damage criterion
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3.3.4. Conclusions
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where ϑ denotes the temperature and ∈vp is the equivalent viscoplastic deformation
(strain), given by

∈vp=

t∫

0

(
2

3
ε̇εεvp : ε̇εεvp

)1/2

dt (4.2)

and ξ is a microdamage quantitative parameter which in metals may be interpreted as
a volume fraction porosity. The evolution of viscoplastic strain has the form presented
previously (3.33) and the isotropic work-hardening/softening function is given as

κ = κ
(
ξ, ϑ,∈vp

)
. (4.3)

The intrinsic microdamage parameter ξ was presented and thoroughly discussed in
papers [46, 152, 153] with particular attention focused on the time-dependent effects.
In general, it consists of two parts: first is responsible for the voids nucleation process
and, second governs the growth mechanism [41, 156, 157]. The computational effort
resulting from the nucleation can be reduced by assuming the initial volume porosity
– ξ0 [39, 159]. Therefore, the evolution of voids can be postulated as [40, 90, 159]

ξ̇ =
1

Tm

g∗(ξ, ϑ)

κ0

[
Ig − τeq(ξ, ϑ,∈vp)

]
, (4.4)

where κ0 denotes the initial yield stress in simple shear, Tmκ0 defines the dynamic
viscosity of the material, g∗(ξ, ϑ) denotes the void growth material function and
τeq (ξ, ϑ,∈vp) represents the stress threshold. The stress intensity invariant is defined
as

Ig = b1J1 + b2
√
J ′
2, (4.5)

where b1 and b2 are material constants and J1 denotes the first invariant of the stress
tensor. The Eq. (4.4) has to be supplemented with the definitions:

g∗(ξ, ϑ) = c1(ϑ)
ξ

1− ξ
, (4.6)

and

τeq
(
ξ, ϑ,∈vp

)
= c2(ϑ)(1− ξ) ln

1

ξ

{
2κs(ϑ)−

[
κs(ϑ)− κ0(ϑ)

]
F (ξ0, ξ, ϑ)

}
, (4.7)

where

F (ξ0, ξ, ϑ) =

(
ξ0

1− ξ0

1− ξ

ξ

)(2/3)δ(ϑ)

+

(
1− ξ

1− ξ0

)(2/3)δ(ϑ)

, (4.8)

δ(ϑ) is a material function that models the level of non-linearity in the material hard-
ening, c1 and c2 are experimentally determined constants (cf. [18, 38]).

The isotropic work-hardening/softening function κ can be postulated as [135, 153]

κ = κ
(
ξ, ϑ,∈vp

)
=

{
κs(ϑ)− [κs(ϑ)−κ0(ϑ)] exp [−δ (ϑ) ∈vp]

}[
1−

(
ξ

ξF

)β(ϑ)
]
, (4.9)
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where
κs(ϑ) = κ∗

s − κ∗∗
s ϑ,

κ0(ϑ) = κ∗
0 − κ∗∗

0 ϑ,

β(ϑ) = β∗ − β∗∗ϑ,

ϑ =
ϑ− ϑ0

ϑ0
,

δ(ϑ) = δ∗ − δ∗∗ϑ,

(4.10)

κ∗
s, κ

∗∗
s , κ∗

0, κ
∗∗
0 , β∗, β∗∗, ϑ0, δ

∗, δ∗∗ are material constants and ϑ0 indicates the reference
temperature, assumed to be 293 K. Components κ0(ϑ) and κs(ϑ) denote the yield
and saturation stress, both temperature-dependent and considered to simple shear,
respectively. The second part of the Eq. (4.9) takes into account the nucleation and
growth of the voids in the material. The temperature-dependent function β(ϑ) models
the relation between the growth of porosity and the material softening.

The critical value of porosity ξF marks the level of damage that leads to the loss
of carrying capacity. This means that for ξ = ξF , the following is true

κ = κ
(
ξ, ϑ,∈vp

)
|ξ=ξF = 0, (4.11)

and is referred to as a fracture criterion.
As the main subject of this treatise is a study of dynamic loading processes, the

temperature evolution can be postulated as

ϑ̇ =
χ∗

ρcp
σ : ε̇εεvp +

χ∗∗

ρcp
ξ̇grow, (4.12)

where χ∗ and χ∗∗ denote the irreversibility coefficients and cp is specific heat. By
postulating that the progressive degradation of material does not contribute to tem-
perature growth, which was suggested in [42], χ∗∗ = 0 can be assumed. The foregoing
means that the temperature rise is controlled only by the rate of the inelastic work.

The previously stated yield function (3.22) is in accord with the classical plasticity
theory that assumes volume constancy during inelastic deformation; this holds for
non-porous materials. However, in the deformation process of porous metals, or the
porous materials in general, the volume can change. In order to address this issue,
new theories have been developed that suggest the yield criterion based on the first
invariant of the stress, J1 = σ11 + σ22 + σ33, and the second invariant of deviatoric
stress J ′

2 [70, 151, 176]. Therefore, the plastic potential function can be assumed in
the form [42]

f =

√
J ′
2 + J2

1 ·
[
n1(ϑ) + n2(ϑ)ξ

]
, (4.13)

where n1(ϑ) = 0 and n2(ϑ) = n2 = const are material parameters.
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4.3. Implementation – VUMAT subroutine

Implementation of the numerical solution of the viscoplastic flow, based on the frac-
tional derivative, was discussed in section 3.2.3 and the same formulation will be
adopted here. The content of that section was consistent with the parametric study
conducted later (section 3.3). Here, however, attention will be focused on presenting in
detail the procedure that governs the calculations in the elastic-viscoplastic constitu-
tive structure valid for the thermo-mechanically coupled process with damage criterion.
The complete procedure was depicted in the flowchart in Fig. 4.1. It should be pointed
out that notation (·)·,n (e.g. Ig,n) used in this flowchart indicates n-th time increment
rather than a partial differentiation with respect to a spatial variable.

In general, within the space of a single time increment, from tn to tn+1, the proce-
dure yields the stresses σn+1 and updates the internal variables µn+1. Prerequisites
for every step are the strain increment εεεn+1, supplied by the Abaqus\Explicit solver,
and the µn vector of previously obtained internal variables. The calculations start
with obtaining the increment of the trial stress via the isotropic Hooke’s law

∆σtrial
n+1 = Le∆εεεn+1, (4.14)

which is subsequently added to the stresses from previous stage

σtrial
n+1 = σn +∆σtrial

n+1 . (4.15)

This is sufficient for verifying the yield condition

f = {J ′
2

(
σtrial

n+1

)
+ n2ξJ

2
1

(
σtrial

n+1

)
}1/2 > κn. (4.16)

If the condition is not met, it means that the elastic trial step lies within the elastic
domain or on the yield surface. Therefore, the following holds

∆εεεn+1 = ∆εεεen+1,

µn+1 = µn.
(4.17)

Conversely, if the yield condition is fulfilled, then multiplier Λn and the direction of
viscoplastic flow pn ought to be calculated. Next, assuming the explicit forward Euler
difference scheme, the viscoplastic strain tensor can be obtained via

∆εεεvpn = ∆tΛnpn ||pn||−1
,

εεεvpn+1 = εεεvpn +∆εεεvpn ,
(4.18)

where ∆t is a time increment. The vector of internal variables µn+1 is updated simi-
larly; details were presented in Fig. 4.1. Finally, the elastic part of the strain tensor is
determined through

εεεen+1 = εεεen + (∆εεεn+1 −∆εεεvpn ) = εεεen +∆εεεen+1. (4.19)
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The last result is then used, along with the Hooke’s law, to retrieve the current stress
state

σn+1 = Leεεεen+1. (4.20)

4.4. Numerical study

4.4.1. Experimental results

Tensile testing is a fundamental tool used in engineering for determining material
behaviour and mechanical properties. Two types of tensile specimens are most common:
first, has a round cross-section and second is a flat specimen with a section of reduced
size in the middle. This last type is sometimes referred to as the dog-bone specimen. In
the literature, many results of experiments conducted on flat test samples can be found.
Here, a small subset of this research focused on the strain-rate sensitivity, localized
deformation and shear banding was chosen.

In experiments conducted by Chakrabarti and Spretnak [18] flat sheet specimens of
different width to thickness ratio were subjected to quasi-static tensile loading. In Fig.
4.2 an initiation and evolution of the shear bands were shown. The first picture on the
left presented the onset of the localization of plastic deformation. In the subsequent
frames, the instability bands are formed and the majority of the deformation is confined
in one band. It becomes an active instability zone where the failure occurs by shearing
through the material.

The quasi-static uniaxial tensile and compression tests for various strain rates were
performed in [88]. Test specimens were made out of ultrafine-grained titanium. In this
study different mode of deformation was observed, namely the inelastic strains were
localized to a necking area – cf. Fig. 4.3. Moreover, authors concluded that for testes
carried out with different strain rates increase in material strength was observed. This
strain-rate hardening could help to overcome softening caused by material flaws.

The foregoing results present only a subset of deformation modes that can occur
during tensile testing. Detailed analysis of material behaviour may require including
effects such as thermal softening and microdamage mechanism, which favours strain
localization, and strain-rate sensitivity and work hardening, which oppose shear lo-
calization. Therefore, the final behaviour of the material is a composition of these
competing phenomena.

4.4.2. Description of numerical tension test

In order to verify the dynamic response of the model and influence of various parameters
on the formation and localization of the shear band, a series of numerical analysis was
conducted. Dimensions of the dog-bone specimen used in these tests were illustrated
in Fig. 4.4. Both dimensions and thickness (ht = 0.8 mm) were based on works [171,
193]. The experimental setup was also depicted in Fig. 4.4, with one end pinned, i.e.
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Figure 4.1. VUMAT subroutine flowchart for the fractional viscoplastic rule
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Figure 4.2. Initiation and gradual development of instability bands in 0.099 cm thick
specimen [18]

Figure 4.3. Optical micrograph showing necking in the annealed ultrafine-grained
titanium (UFG-Ti) [88]
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Figure 4.1. VUMAT subroutine flowchart for the fractional viscoplastic rule
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Figure 4.2. Initiation and gradual development of instability bands in 0.099 cm thick
specimen [18]

Figure 4.3. Optical micrograph showing necking in the annealed ultrafine-grained
titanium (UFG-Ti) [88]
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Figure 4.4. Dimensions and boundary conditions of the dog-bone specimen in an
uniaxial tensile test

displacements u1 = u2 = u3 = 0. The other side was subjected to the displacement
field v that applies tension in the (1) direction. The numerical study was conducted for
various velocities v ∈ {10, 25, 50, 100} m/s, therefore inducing corresponding average
strain rates 500, 1250, 2500, 5000 s−1, in the gauge region. The results presented in
this chapter have been published in [201].

4.4.3. FEM model and material parameters

The geometry of the dog-bone was modelled in Abaqus with C3D8R elements (8-node
linear brick, reduced integration element). Multiple sections were created to ensure
a generation of symmetric mesh, which was presented in Fig. 4.5. Model partition
ensures a smooth transition between curved and straight parts and follows the specimen
outline. Eight solid elements were used through the thickness to capture the first
symptoms of necking during loading and properly execute the element deletion method,
based on the previously mentioned damage criterion. The model accuracy comes with
its cost since it has 1125k degrees of freedom. Numbers in Fig. 4.5 refer to points for
which the internal state variables were determined; these results are discussed later in
text (cf. Figs. 4.10–4.13). It is worth noting that no discontinuities nor inhomogeneities
in the mesh geometry were used to stimulate the onset of damage nucleation.

The material parameters (summarized in Tab. 4.1) used in this numerical study were
based on the work of Dornowski and Perzyna [42]. These are required by the elastic-
viscoplastic part of the material model and were chosen through a curve fitting against
experimental results obtained by Chakrabarti and Spretnak [18]. Finally, assuming
that ∆L = ∆R, the number of parameters is equal to 31.
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Figure 4.5. Finite element model of a dog-bone specimen. Numbers refer to points
where the state variables were examined; those results are discussed later

Table 4.1. Material parameters based on work [42] by Perzyna and Dornowski

κ∗
s = 808 MPa κ∗∗

s = 230 MPa κ∗
0 = 635 MPa κ∗∗

0 = 181 MPa

β∗ = 2.2 β∗∗ = 0.63 ϑ0 = 293 K ρref = 7850 kg/m3

E = 205 GPa ν = 0.27 Tm = 0.01 µs m = 1

c1 = 0.202 c1 = 0.067 b1 = 1.0 b2 = 1.3

ξ0 = 6 · 10−4 ξF = 0.2 δ∗ = 28 δ∗∗ = 8

n1 = 0 n2 = 0.25 χ∗ = 0.9 cp = 455 J/kg K
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4.5. Numerical examples

4.5.1. General remarks

In this section, the behavior of the fractional viscoplastic model is examined in a dy-
namic tension test. First, the internal fields, namely equivalent viscoplastic strain ∈vp,
temperature ϑ, porosity ξ, and work-hardening/softening strength parameter κ were
captured during loading and after material failure. Next, the values of these variables
were measured in 20 different points and plotted against time. Finally, the evolution
of the intrinsic microdamage parameter was examined. Numerical analyses, conducted
in this part of the study, were all carried out for velocity v = 50 m/s, and fractional
parameters α = 0.5 and ∆22 = 3.0 MPa.

In the second part, a parametric study was conducted where the deformation pro-
cess was observed as a function of α and ∆ and the load velocity. The three-dimensional
numerical model of the tensile test allows for close observation of the shear bands for-
mation and the necking process. Also, the localization of the maximum strain region
as a function of the α, ∆ and velocity is here discussed. In the second part, mainly the
distribution of ∈vp will be presented on the contour plots, with two additional charts
for ϑ and κ. However, this should not diminish its scientific value since there is a strong
coupling between the state variables, which will be demonstrated.

4.5.2. State variables evolution

In Figs. 4.6 and 4.7 the specimen after over 0.1 ms of loading is presented. It can be
observed that the region where the viscoplastic strain occurs is limited to the necking
area, while the rest of it is in the elastic state – cf. Fig. 4.6a. The zone, where strain is
significantly greater than the surrounding regions, is not evenly distributed, rather it is
confined to a small area within the narrow section. Temperature distribution, as pre-
sented in Fig. 4.6b is similar to the inelastic strain above. This is to be expected since,
according to Eq. (4.12) and the value of coefficient χ∗, 90 percent of the viscoplastic
work dissipates into heat. Damage understood as an increase of porosity is presented
in Fig. 4.7a. A slight increase in value can be observed in the area that corresponds to
the maximum value of ∈vp. Yield strength, denoted by κ, shows the greatest volatility
amid all internal state variables. The red contours mark the hardening of the material,
i.e. the value of κ increased over its initial value of κ0, while the blue area indicates
the material softening. The latter is coupled with the areas of increased strain and
temperature.

The computational case, where the deformation progress to a point of material
failure, was depicted in Figs. 4.8 and 4.9. In can be seen that the damage occurred
in the place where values of ∈vp, ϑ, ξ were growing. Development of the field ξ is
particularly crucial as the element deletion method executes when it reaches a critical
value - ξF . These numerical examples show that state variables are strongly coupled
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Figure 4.6. Contour plot of: a) equivalent viscoplastic strain and b) temperature during
deformation [201]
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Figure 4.7. Contour plot of: a) porosity and b) work-hardening/softening function [201]
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Figure 4.8. Contour plot of: a) equivalent viscoplastic strain and b) temperature during
deformation after material damage [201]

and are not uniformly distributed. In the subsequent section (4.5.5), the main focus
will be on the evolution of ∈vp, but it should be remembered that in each case all
internal state variables change as deformation progresses.

4.5.3. State variables evolution at selected integration points

The foregoing results were snapshots of the deformation progress and clearly show
that the values of internal fields are non-uniformly distributed. In order to analyze
the evolution of the state variables their values were sampled in 20 different points (cf.
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Figure 4.7. Contour plot of: a) porosity and b) work-hardening/softening function [201]
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Figure 4.8. Contour plot of: a) equivalent viscoplastic strain and b) temperature during
deformation after material damage [201]
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will be on the evolution of ∈vp, but it should be remembered that in each case all
internal state variables change as deformation progresses.

4.5.3. State variables evolution at selected integration points
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the evolution of the state variables their values were sampled in 20 different points (cf.
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Figure 4.9. Contour plot of: a) porosity and b) work-hardening/softening function
after material damage [201]
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Fig. 4.5) and plotted against the time in Figs. 4.10–4.13. The location of these points
was illustrated in Fig. 4.5. The superscript (in), was used to denote the points that
are a projection of points on the dog-bone specimen surface, with the same indexes.

As was mentioned before, the element deletion method is controlled by the value of
intrinsic microdamage ξ and is triggered when it reaches the critical value, i.e. ξF = 0.2.
However, sometimes the growth of ξ is progressing slowly and the ξF threshold is never
exceeded, resulting in excessive distortion of elements. This can be largely avoided by
using an additional coefficient (0.9) which lowers the threshold. Hence, the value of ξ
in the charts never exceeds 0.18.

In the first group, points 1 to 5 in Fig. 4.10, the biggest changes can be observed in
point 2 which is located close to the strain localization. The rise and fall of current yield
shear strength (κ) illustrate two phases of deformation which end when the material
degradation depletes its load-carrying capacity. This is correlated with the evolution
of voids (ξ), inelastic strain (∈vp) and temperature increase (ϑ). The next group
comprises of points 1(in)–5(in), which correspond to points 1–5 but are located inside
the material. The main difference observed here are lower levels of ϑ and ∈vp, cf. Fig.
4.11.

The second group is formed by points 6 to 10, selected to illustrate state vari-
ables evolution at the edge of the specimen. These points were chosen so that their
placement on the horizontal axis was consistent with points 1–5. Fig. 4.12 illustrates
the deformation process on the surface of the dog-bone model in these points. Both
the hardening and softening of the material can be observed in Fig. 4.12a however,
conversely to previous examples, its strength is not completely depleted due to the
deformation. This can be explained by a zero value of the microdamage tensor ξ and
lower values of ∈vp and ϑ. In other words, material softening on the surface is driven
only by the thermal effects.

Fig. 4.13 illustrates state variables inside the specimen located close to its edge.
Here, the current yield shear strength degradation is similar to what was observed for
points 1–5, as it falls to zero. Also, it can be noted how rapidly material load-carrying
capacity deteriorated once the value of ξ started to rise.

4.5.4. Fracture criterion based on the evolution of the microdamage

In the fractional viscoplasticity, the depreciation of load-carrying capacity is caused
by the thermal softening and internal damage, however only the latter determines the
material degradation leading to material fracture. The microdamage-based criterion is
used to trigger the element deletion procedure in Abaqus\Explicit when ξ exceeds the
limit of ξF . Stress value at the material point decreases exponentially, according to
the isotropic hardening-softening material function κ proposed in Eq. (4.9), potentially
going to zero if the fracture occurs. This behaviour is consistent with experimental
observations [155]. In the following figure, the damage progression during the dynamic
loading and evolution of ξ in various points is analyzed.
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Figure 4.10. State variables on the surface of the dog-bone model for points 1–5 (cf.
Fig. 4.5) [201]

Fig. 4.14 illustrates the location and number of elements, denoted in the black
rectangular, where the critical value ξF was reached. For the sake of clarity, the position
of damaged elements is presented on the undeformed model. The progress of the damage
was captured for 6 different time steps. It can be observed that the material failure
begins inside and propagates towards edges. A detailed evolution of ξ in 5 different
points is depicted in Fig. 4.15. This is in line with the previous observation, i.e.
the further from the center of the specimen the later the fraction begins. Also, the
maximum value of the damage parameter ξ equals 0.18, due to the reasons mentioned
earlier (section 4.5.3).
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Figure 4.11. State variables inside the dog-bone model for points 1(in)–5(in) (cf. Fig.
4.5)

4.5.5. Parametric study

Numerical investigations presented in this section were designed to examine the rate-
dependent behaviour of the fractional model. Without the loss of generality, results
were collected for two values of α ∈ {1, 0.5} and three ∆ parameters. When the
stress-fractional spread is set to be dominant in one direction, for instance ∆11 = 3.0,
then the remaining parameters are equal to one, i.e. ∆22 = 1.0 and ∆33 = 1.0. Each
column presents results for different velocities and different moments in time, t ∈
{0.0003, 0.000176, 0.0001, 0.00005} s, selected to present similar deformation progress.
Symbol xk is used to denote the distance between the loaded end (top) and the place
where ∈vp is maximum. Also, under each strain map, there is a cross-section (A–A)
of the zone where the deformation reaches the peak value. The maximum value of
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Figure 4.12. State variables on the surface of the dog-bone model for points 6–10 (cf.
Fig. 4.5)

equivalent viscoplastic strain presented on these figures is 1.5. Zones that exceed this
value are marked by grey colour.

In Fig. 4.16 the Perzyna-type viscoplasticity is obtained for α = 1 and the case
where the viscoplastic flow is induced in the (1) direction (∆11 = 3.0). The necking
localization depends on the velocity however, it does not change considerably between
the classical and fractional material model; cf. the first and second row of Fig. 4.16.
For α = 1, the lateral deformation depicted on the cross-section is greater than for
the fractional case in the same figure. This is a result of inducing inelastic flow in
the (1) direction, which increases the energy dissipation along one axis, thus reducing
deformation in other directions.

The foregoing phenomenon can be also observed in Fig. 4.17 where the intensified
viscoplastic flow is produced in the (2) and (3) direction. Again, the inelastic deforma-
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Figure 4.13. State variables inside the dog-bone model for points 6(in)–10(in) (cf.
Fig. 4.5)

tion, as seen in the A–A cross-section, is the greatest along the axis that corresponds
to the direction of ∆. In the top row reduction of the dimensions is the largest in the
direction (2), and, respectively, the largest change of size is observed in the direction
(3) in the bottom row. Moreover, the shape of the shear bands is also different in these
two cases, which is discussed later. The last relevant conclusion can be drawn from
observing the level of viscoplastic strain in different columns. As the velocity increases
the intensity of ∈vp decreases, which is most probably the result of rate-dependent
hardening.

Figs. 4.18 and 4.19 present a detailed view of the zone where the viscoplastic de-
formation is concentrated. In addition, two parameters, ht and wt, which denote the
dimensions of the deformation zone, were given. It can be seen that induced anisotropy
in the direction (1), bottom row in Fig. 4.18, prevents the formation of any distinct
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Figure 4.14. Fracture localization on the undeformed dog-bone numerical model
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Figure 4.15. Microdamage evolution inside the specimen for the five points denoted as
A–E

pattern. Moreover, dimensions do not differ significantly from those for an undeformed
specimen, i.e. wt = 8 mm and ht = 0.8 mm. For α = 1 the strain-rate hardening is
visible since the shear bands are forming for v ∈ {10, 25} m/s, but disperse when the
velocity increases. The same behaviour is observed in Fig. 4.19 where the pattern
becomes blurry as the velocity grows.

The most intense size change occurs along the axis (2) for ∆22 = 3.0, cf. Fig. 4.17.
Thus, wt is the smallest of all four sets of parameters in this particular case. Identical
relation can be identified when ∆33 = 3.0 and the lowest value of ht is recorded. In
other words, the dimensions change the most in the direction of anisotropy induced by
parameter ∆. Bear in mind that results in one column depict the same moment in time
but for different values of α and ∆. Therefore, a conclusion can be drawn that these
parameters also affect the intensity and extent of viscoplastic deformation, indicated
by the size and spatial distribution of the red zones.

Finally, in Figs. 4.20 and 4.21, the distributions of temperature and the current
yield shear strength were presented. It can be observed that the fractional parameters
have a significant impact on these state variables as well. Also, these results pro-
vide another evidence for the thermo-mechanical coupling in the fractional viscoplastic
model.

4.6. Conclusions

In this section, the fractional viscoplastic model, which takes into account thermal and
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Figure 4.15. Microdamage evolution inside the specimen for the five points denoted as
A–E

pattern. Moreover, dimensions do not differ significantly from those for an undeformed
specimen, i.e. wt = 8 mm and ht = 0.8 mm. For α = 1 the strain-rate hardening is
visible since the shear bands are forming for v ∈ {10, 25} m/s, but disperse when the
velocity increases. The same behaviour is observed in Fig. 4.19 where the pattern
becomes blurry as the velocity grows.

The most intense size change occurs along the axis (2) for ∆22 = 3.0, cf. Fig. 4.17.
Thus, wt is the smallest of all four sets of parameters in this particular case. Identical
relation can be identified when ∆33 = 3.0 and the lowest value of ht is recorded. In
other words, the dimensions change the most in the direction of anisotropy induced by
parameter ∆. Bear in mind that results in one column depict the same moment in time
but for different values of α and ∆. Therefore, a conclusion can be drawn that these
parameters also affect the intensity and extent of viscoplastic deformation, indicated
by the size and spatial distribution of the red zones.

Finally, in Figs. 4.20 and 4.21, the distributions of temperature and the current
yield shear strength were presented. It can be observed that the fractional parameters
have a significant impact on these state variables as well. Also, these results pro-
vide another evidence for the thermo-mechanical coupling in the fractional viscoplastic
model.

4.6. Conclusions

In this section, the fractional viscoplastic model, which takes into account thermal and
microdamage effects, was explored. This constitutive formulation considers thermal



80 CHAPTER 4. FRACTIONAL VISCOPLASTICITY WITH...

Figure 4.16. Deformation of the dog-bone specimen under various loading conditions
for: classical viscoplasticity (α = 1) and induced viscoplastic flow in the direction
(1) [201]

softening, strain-rate hardening, work-induced hardening/softening and porosity-based
failure criterion. Next, the implementation and numerical algorithm for fractional vis-
coplasticity were thoroughly discussed. The dynamic response of this new material
model was examined for a dog-bone specimen in a series of numerical tensile tests. In
the first part, the coupling between mechanical and thermal fields was studied. This
was conducted for a specimen before and after the critical damage in the material
occurred. Next, the evolution of state variables in 20 different points was examined.
Finally, the localization of damaged elements and development of microdamage param-
eter was investigated. In the second part, the results for various velocities and four sets
of fractional parameters were combined in order to examine deformation anisotropy,
formation of necking and shear bands, as well as the localization of damaged region.
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Figure 4.17. Deformation of the dog-bone specimen under various loading conditions
for: induced viscoplastic flow in the direction (2) and (3) [201]

The main conclusions from the studies are:

• In fractional viscoplasticity, the thermo-mechanical coupling can be observed
among ϑ, ∈vp and ξ.

• Non-uniform distribution of the current yield shear strength, denoted by κ, results
from a combination of work hardening with thermal and microdamage softening.

• For some material points, there is no evolution of the microdamage parameter ξ.
In such cases, degradation of the material strength is solely caused by thermal
softening.

• Strain-rate hardening is responsible for the decrease in the level of viscoplastic
strain and diminished evolution of shear bands.
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Figure 4.17. Deformation of the dog-bone specimen under various loading conditions
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Figure 4.18. Detailed view of the viscoplastic strain localization (focus from Fig. 4.16)
along with the dimensions of the deformation zone [201]

• Fractional parameters, α and ∆, are responsible for inducing anisotropy in the
deformation process.

• Directional dependence, controlled by the α and ∆, affects the level of viscoplastic
strain (∈vp) as well as dimensions and shape of the deformed zone.

• The evolution and form of X-shaped shear bands strongly depend on the direction
of the ∆ parameter.

• The development of shear bands in the framework of fractional viscoplasticity is
a result of dispersive and dissipative qualities of the material model, which leads
to spontaneous strain localization. Conversely, in the rate-independent plasticity
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Figure 4.19. Detailed view of the viscoplastic strain localization (focus from Fig. 4.17)
along with the dimensions of the deformation zone [201]

geometrical imperfections have to be introduced to the numerical model oth-
erwise, the homogeneous deformation would advance without the formation of
shear bands [154].
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Figure 4.19. Detailed view of the viscoplastic strain localization (focus from Fig. 4.17)
along with the dimensions of the deformation zone [201]
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shear bands [154].
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Figure 4.20. Temperature distribution as a function of the fractional parameters and
the tension velocity
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Figure 4.21. Current yield shear strength as a function of the fractional parameters
and the tension velocity
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Figure 4.20. Temperature distribution as a function of the fractional parameters and
the tension velocity
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Figure 4.21. Current yield shear strength as a function of the fractional parameters
and the tension velocity



Chapter 5

Conclusion and future work

5.1. Introduction

In this final chapter conclusions along with recommendations for possible directions for
future work are provided. These conclusions are based upon the numerical simulations
conducted in chapters 3 and 4 of this treatise.

5.2. General conclusions

The main objective of the research presented in this treatise was to study how the
application of fractional derivative affects the dynamic behavior of elastic-viscoplastic
material model. Given that the fractional viscoplasticity is a relatively new concept,
this was the first such extensive research on this subject. Numerous authors have
demonstrated in the literature that fractional generalization gives rise to non-local
properties in the material. Regarding viscoplasticity, it manifested itself in the non-
normality of viscoplastic flow and induced anisotropy. The proposed model has the
potential to be a reliable and flexible tool to analyse dynamic material behaviour in
the field of civil engineering. Specifically, when the dynamic response of construction
to blast loading is being considered. Also, the abrupt loss of load-bearing capacity due
to the structural failure could be analysed using fractional viscoplasticity.

Chapter 3 began with a terse introduction to the fractional calculus with a partic-
ular focus on Riesz-Caputo fractional derivative. Next, the basic equations of elastic-
viscoplastic formulation were given. To this point, classical Perzyna-type viscoplas-
ticity was being considered, which postulated the associated flow rule. Next, the ap-
plication of the fractional operator to viscoplasticity was presented. It was followed
by a demonstration of the numerical implementation and the numerical procedure for
obtaining an approximate solution.
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Original results presented in this chapter were divided into two groups to clearly
separate the impact of the rate-dependent (viscous) and non-local (fractional) para-
meters. The dynamic response of the material was studied for an elementary cube
under uniaxial loading. The first part of the investigation was focused on the impact
of the derivative order α and the ∆ parameter. Both parameters allow to controlling
the level of stress wave oscillations. Moreover, when the ∆ is modified in the direction
perpendicular to the applied load, an induced anisotropy is observed, for different val-
ues of α. The directional properties also affect the strain-rate hardening, which was
observed for different values of the order of the fractional differentiation operator.

The second group of analysis concerned the relaxation time Tm and the rate-
sensitivity parameter m. Their influence was studied for fixed values of fractional
parameters and three different velocities of the applied displacement fields. It was
observed that both Tm and m control the dynamic response of the material. In par-
ticular, they impact the amplitude of the oscillations and the level of anisotropy, as
well as the degree of the strain-rate hardening. Another important finding was that
the level of stress, in relation to the classical viscoplastic formulation, depended on
the direction of ∆. This relation hinted that anisotropy can be also manifested in the
inelastic dissipation of mechanical wave energy.

The last series of analysis was directed towards examining the foregoing phenomena.
The frequency of the mechanical wave was the basis for this investigation. It was found
that the anisotropy is observed for various ∆ parameters. Therefore, the direction of
energy dissipation can be also controlled in the new fractional model.

In chapter 4, the fractional viscoplastic model was extended with temperature ϑ,
intrinsic volume porosity ξ and work-hardening/softening strength parameter κ. Addi-
tionally, a fracture criterion was introduced based on the evolution of the internal state
variable ξ, which takes into account the microdamage effects. For clarity’s sake, the
full set of equations has been presented with the implementation details. The numeri-
cal investigations, presented in this chapter, used a finite element model of a dog-bone
specimen dynamically loaded in the uniaxial tensile tests. Much attention was paid
to FEM mesh generation and its density. To capture any effects that may appear
in the cross-section of the material, 8 solid elements were used through the specimen
thickness.

The first part of the study was conducted in order to analyze the relationship
between different thermo-mechanical fields. Areas, where the inelastic strain and tem-
perature peaked, were localized within the necking of the specimen. The maximum
value of the damage parameter ξ also was concentrated in this same place. Interest-
ingly, the value of κ presented great variability over the entire length of the dog-bone
sample. As expected the damage occurred in the place where the rapid evolution of
porosity was previously observed.

An in-depth examination of the state variables during deformation was conducted
for 20 selected points, placed both on the surface and inside the specimen. It was found
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that the evolution of internal fields strongly depends on its location in relation to the
necking zone. The increase of temperature initiates material softening, but the rapid
degradation in material strength occurs when the value of the microdamage parameter
starts to grow. In was also shown that fracture in material starts in the area where
the strain is concentrated and then progress from the specimen center to its edges.

Next, the parametric study focused on the influence of the fractional parameter
(∆) on the deformation mechanism for various velocities of displacement fields was
conducted. It can be observed that deformation is intensified in the direction that
corresponds to the direction of ∆. Also, the strain-rate hardening can be recognized
since the level of ∈vp decreases as the velocity of the load grows. Conversely, the
maximum value and spatial distribution of ∈vp is strongly affected by the value of
∆. This induced anisotropy, resulting from the fractional approach, is also visible
in the cross-sectional views of the specimen. Moreover, the intensity of viscoplastic
deformation is indicated by the size and spatial distribution of the shear bands.

This study set out to determine various effects that result from the fractional deriva-
tive application to the elastic-viscoplastic material model. It was shown that this ap-
proach induces anisotropy in material inelastic deformation and energy dissipation.
New parameters, α and ∆, control the dynamic response of the material by affecting
the strain-rate hardening, viscoplastic strain and material degradation upon the mo-
ment of failure. This is all done with only two new material parameters without the
need to identify material constants again. Fractional viscoplasticity has the potential to
aid in solving problems in civil engineering that require the knowledge of the dynamic
behaviour of metal structures. The successful implementation of this model provides
access to a flexible tool for designing and analyzing structures.

The fulfilment of the objectives stated in the chapter 1 is summarized in the fol-
lowing points:

1. Numerical procedure accounting for the thermal and mechanical effects of deforma-
tion was created and used in chapter 4 to study induced anisotropy resulting from
the fractional framework. Also, this code was use to analyse thermal and mechani-
cal fields in the dynamical tests. The implemented fracture criterion, based on the
growth of porosity, was instrumental in showing the relation between the inelastic
strain localization and material damage evolution.

2. A finite element model was developed for investigations at the material point level.
The dynamic response of this cube element was governed by the viscoplastic strain
rate generalized in the framework of fractional calculus. No thermal nor microme-
chanical effects were implemented here, cf. [200].

3. A full 3-D finite model of a dog-bone specimen was devised to give further insight
into the generalized elastic-viscoplastic formulation. The finite mesh was partitioned
to ensure a smooth transition between straight and curved parts of the dog-bone
specimen, which in turn resulted in a better quality mesh. Eight solid elements
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through the specimen thickness, were used to study the effects of anisotropy that
originate from the fractional solution.

4. The relation between material parameters and dispersion of mechanical waves was
studied in section 3.3.3. Results obtained at the material point level show that
fractional parameters, i.e. α and ∆, have an impact on energy dissipation observed
as a change of the wave frequency. Therefore, the induced anisotropy exhibits itself
in viscoplastic deformation as well as the wave propagation. The further numerical
analysis revealed the relationship between relaxation time Tm and wave frequency
in the loading direction.

5. Research into the impact of fractional and viscous parameters was conducted and
discussed in chapter 3. It was found that fractional parameters affect the rate-
dependent hardening and the characteristics of the mechanical wave, as well as
the induced viscoplastic anisotropy, which was also observed. Anisotropy results
in a direction-dependent change of dimensions and trajectory of the stress-strain
curve. The relaxation time (Tm) and strain-rate sensitivity (m) have impact on
stress wave propagation and material hardening.

6. An investigation of the deformation and the state variables in the full 3-D model
was presented in chapter 4. As anticipated, the strain localization was observed
in various modes which were strongly dependent on the order of the fractional
derivative (α) and the fractional direction (∆). The evolution and the dimensions of
X-shaped bands, as well as the level of viscoplastic strain ∈vp, were strongly affected
by the foregoing parameters. It was also observed that strain-rate hardening was
a significant factor in the inhibition of shear band formation.

7. Thermo-mechanical coupling among ϑ, ξ and ∈vp was observed in the obtained
results. The intense evolution of these state variables was to concentrated in the
necking zone. The distribution of κ was not uniform on the specimen surface,
displaying regions of increased and decreased strength. This can be attributed to
the combination of work hardening and softening, which stems from thermal and
microdamage effects. Detailed investigation of state variables during deformation
revealed that in regions where there is no evolution of microdamage parameter ξ,
only thermal softening occurs.

8. In conclusion, the results reflect the one obtained in the available experimental
studies.

Taking into account the achieved objectives, it can be asserted that
the thesis of this dissertation (section 1.3), which stated that the fractional
formulation of the viscoplastic model improves the description of metals
behaviour under dynamic loading, is correct.

5.3. FUTURE WORK 91

5.3. Future work

The work presented in this treatise can be extended in the following ways.

1. Extend the definition of the fractional viscoplasticity to the large strain theory.
Further study should answer the question if this path is possible and what sort of
results it could yield.

2. Confirm the applicability of fractional approach by comparing numerical results with
experimental data. A detailed research report where the measurement points were
unequivocally marked is a logical candidate for studying this type of correlation.
Moreover, the data would have to come from a dynamic test where high strain rates
could be achieved.

3. Use fractional viscoplasticity in the modelling large scale structural elements com-
mon in civil engineering. While this application does not pose significant challenges
in the field of computational mechanics, it could be a helpful tool in designing
structures that have to withstand a dynamic loading.

4. Develop a numerical procedure to identify material parameters associated with the
fractional formulation, i.e. α and ∆. This would require a mixed approach where
the identification procedure is combined with the processing images from multiple
cameras. The properly built system could capture, analyze and transform data
about deformation anisotropy into material parameters.
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ciative and non-associative materials. Géotechnique, 43(3):443–456, 1993. [cited at p. 3]

[45] B. Dumitru, D. Kai, and S. Enrico. Fractional Calculus: Models and Numerical Methods.
Series on Complexity, Nonlinearity and Chaos. World Scientific Publishing Company,
2012. [cited at p. 7]

[46] M. K. Duszek–Perzyna and P. Perzyna. Analysis of the influence of different effects
on criteria for adiabatic shear band localization in inelastic solids. Archive of Applied
Mechanics, 50, 1994. [cited at p. 60]

[47] A. C. Eringen. Linear theory of micropolar elasticity. Journal of Mathematics and
Mechanics, pages 909–923, 1966. [cited at p. 4]

[48] A. C. Eringen. Mechanics of Continua. J. Wiley & Sons, New York, 1967. [cited at p. 4]

[49] A. C. Eringen. Nonlocal continuum field theories. Springer Science & Business Media,
2002. [cited at p. 4]

[50] D. C. Erlich, L. Seaman, D. A. Shockey, and D. R. Curran. Development and application
of a computational shear band model. Technical report, SRI International, Menlo Park,
CA, 1980. [cited at p. 5]

[51] Z. E. A. Fellah, J. Y. Chapelon, S. Berger, W. Lauriks, and C. Depollier. Ultrasonic
wave propagation in human cancellous bone: Application of biot theory. The Journal
of the Acoustical Society of America, 116(1):61–73, 2004. [cited at p. 7]

[52] Z. E. A. Fellah, C. Depollier, and M. Fellah. Application of fractional calculus to the
sound waves propagation in rigid porous materials: Validation via ultrasonic measure-
ments. Acta Acustica United with Acustica, 88(1):34–39, 2002. [cited at p. 7]

[53] Y. Ferdi. Computation of fractional order derivative and integral via power series ex-
pansion and signal modelling. Nonlinear Dynamics, 46(1-2):1–15, 2006. [cited at p. 7]

[54] N. A. Fleck and J. W. Hutchinson. Strain gradient plasticity. Advances in Applied
Mechanics, 33:295–361, 1997. [cited at p. 4]

[55] G. S. F. Frederico and D. F. M. Torres. Fractional Noether’s theorem in the
Riesz – Caputo sense. Applied Mathematics and Computation, 217:1023–1033, 2010.
[cited at p. 37]

[56] A. Gajo, D. Bigoni, and D. M. Wood. Multiple shear band development and related
instabilities in granular materials. Journal of the Mechanics and Physics of Solids,
52:2683–2724, 2004. [cited at p. 3]

[57] B. G. Galerkin. Series solution of some problems of elastic equilibrium of rods and
plates. Vestnik Inzhenerov i Tekhnikov, 19:897–908, 1915. [cited at p. 30]

BIBLIOGRAPHY 97

[58] X. Gao, T. Zhang, J. Zhou, S. M. Graham, M. Hayden, and C. Roe. On stress-state
dependent plasticity modeling: significance of the hydrostatic stress, the third invariant
of stress deviator and the non-associated flow rule. International Journal of Plasticity,
27(2):217–231, 2011. [cited at p. 4]

[59] M. G. D. Geers. Experimental analysis and computational modelling of damage and
fracture. Eindhoven University of Technology, Eindhoven, 1997. [cited at p. 4]

[60] N. Germain, J. Besson, and F. Feyel. Composite layered materials: Anisotropic nonlocal
damage models. Computer Methods in Applied Mechanics and Engineering, 196(41-
44):4272–4282, 2007. [cited at p. 4]

[61] A. Glema. Analiza natury falowej zjawiska lokalizacji. Rozprawy nr 379. Wydawnictwo
Politechniki Poznańskiej, Poznań, 2004. [cited at p. 6]

[62] A. Glema, W. Kąkol, and T. Łodygowski. Numerical modelling of adiabatic shear
band formation in a twisting test. Engineering Transactions, 45(3-4):419–431, 1997.
[cited at p. 6]

[63] A. Glema and T. Łodygowski. On importance of imperfections in plastic strain localiza-
tion problems in materials under impact loading. Archives of Mechanics, 54(5-6):411–
423, 2002. [cited at p. 6]

[64] A. Glema, T. Łodygowski, and P. Perzyna. Interaction of deformation waves and lo-
calization phenomena in inelastic solids. Computer Methods in Applied Mechanics and
Engineering, 183:123–140, 2000. [cited at p. 6]

[65] A. Glema, T. Łodygowski, and P. Perzyna. Localization of plastic deformations as
a result of wave interaction. Computer Assisted Mechanics and Engineering Sciences,
10(1):81–91, 2003. [cited at p. 6]

[66] A. Glema, T. Łodygowski, and W. Sumelka. Nowacki’s double shear test in the frame-
work of the anisotropic thermo-elasto-vicsoplastic material model. Journal of Theoretical
and Applied Mechanics, 48(4):973–1001, 2010. [cited at p. 4]

[67] A. Glema, T. Łodygowski, W. Sumelka, and P. Perzyna. The numerical analysis of the
intrinsic anisotropic microdamage evolution in elasto-viscoplastic solids. International
Journal of Damage Mechanics, 18(3):205–231, 2009. [cited at p. 6, 7]

[68] R. Gorenflo and F. Mainardi. Fractional calculus. In Fractals and fractional calculus in
continuum mechanics, pages 223–276. Springer, 1997. [cited at p. 7]

[69] D. E. Grady. Dissipation in adiabatic shear bands. Mechanics of Materials, 17(2-3):289–
293, 1994. [cited at p. 6]

[70] R. J. Green. A plasticity theory for porous solids. International Journal of Mechanical
Sciences, 14(4):215–224, 1972. [cited at p. 61]

[71] M. E. Gurtin and A. I. Murdoch. A continuum theory of elastic material surfaces.
Archive for Rational Mechanics and Analysis, 57(4):291–323, 1975. [cited at p. 4]

[72] K. A. Hartley, J. Duffy, and R. H. Hawley. Measurement of the temperature profile
during shear band formation in steels deforming at high strain rates. Journal of the
Mechanics and Physics of Solids, 35(3):283–301, 1987. [cited at p. 5]



96 BIBLIOGRAPHY

[43] W. Dornowski and P. Perzyna. Numerical investigation of localized fracture phenomena
in inelastic solids. Foundations of Civil and Environmental Engineering, 7:79–116, 2006.
[cited at p. 6, 40]

[44] A. Drescher and E. Detournay. Limit load in translational failure mechanisms for asso-
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